[1] |
唐惠燕, 包平. 基于GIS江苏水稻种植面积与产量的空间重心变迁研究[J]. 南京农业大学学报(社会科学版), 2014, 14(1):118-124.
Google Scholar
|
[2] |
Tang H Y, Bao P. Change of spatial gravity center of rice planting area and yield in Jiangsu Province based on GIS[J]. Journal of Nanjing Agricultural University(Social Science Edition), 2014, 14(1):118-124.
Google Scholar
|
[3] |
杨彩云, 杨广斌, 戴丽. 贵州省耕地利用效益时空分异特征研究[J/OL]. 湖南师范大学自然科学学报:1-10[2022-03-10]. http://kns.cnki.net/kcms/detail/43.1542.N.20210114.1321.002.html .
Google Scholar
|
[4] |
Yang C Y, Yang G B, Dai L. Guizhou Province cultivated land utilization benefit of time and space differentiationcharacteristics research[J/OL]. Hunan Normal University Journal of Natural Science:1- 10 [2021-12-22]. http://kns.cnki.net/kcms/detail/43.1542.N.20210114.1321.002.html .
Google Scholar
|
[5] |
苟志宏, 胥桂凤, 樊佳俐. 贵州省耕地资源利用效率评价及障碍因子识别[J]. 国土与自然资源研究, 2021(5):24-29.
Google Scholar
|
[6] |
Gou Z H, Xu G F, Fan J L. Cultivated land resource use efficiency evaluation in Guizhou and obstacle factor recognition[J]. Journal of Land and Natural Resources Research, 2021(5):24-29.
Google Scholar
|
[7] |
易其国, 高妍, 陈慧婷. 喀斯特贫困山区耕地资源生态安全分析——以贵州省为例[J]. 农村经济与科技, 2021, 32(1):19-20.
Google Scholar
|
[8] |
Yi Q G, Gao Y, Chen H T. Ecological security analysis of cultivated land resources in Karst poor mountainous areas:A case study of Guizhou Province[J]. Rural Economy and Science and Technology, 2021, 32(1):19-20.
Google Scholar
|
[9] |
Moran M S, Inoue Y, Barnes E M. Opportunities and limitations for image-based remote sensing in precision crop management[J]. Remote Sensing of Environment, 1997, 61(3):319-346.
Google Scholar
|
[10] |
郑长春, 王秀珍, 黄敬峰. 基于特征波段的SPOT-5卫星影像水稻面积信息自动提取的方法研究[J]. 遥感技术与应用, 2008, 23(3):294-299.
Google Scholar
|
[11] |
Zheng C C, Wang X Z, Huang J F. Automatic extraction of rice area information from SPOT-5 satellite imagery based on feature bands[J]. Remote Sensing Technology and Application, 2008, 23(3):294-299.
Google Scholar
|
[12] |
Mathur A, Foody G M. Crop classification by support vector machine with intelligently selected training data for an operational application[J]. International Journal of Remote Sensing, 2008, 29(8):2227-2240.
Google Scholar
|
[13] |
Jia K, Wu B, Li Q. Crop classification using HJ satellite multispectral data in the North China Plain[J]. Journal of Applied Remote Sensing, 2013, 7(1):073576.
Google Scholar
|
[14] |
张健康, 程彦培, 张发旺. 基于多时相遥感影像的作物种植信息提取[J]. 农业工程学报, 2012, 28(2):134-141.
Google Scholar
|
[15] |
Zhang J K, Cheng Y P, Zheng F W. Extraction of crop planting information based on multi-temporal remote sensing image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2):134-141.
Google Scholar
|
[16] |
Foerster S, Kaden K, Foerster M, et al. Crop type mapping using spectral-temporal profiles and phenological information[J]. Computers and Electronics in Agriculture, 2012, 89:30-40.
Google Scholar
|
[17] |
李鑫川, 徐新刚, 王纪华, 等. 基于时间序列环境卫星影像的作物分类识别[J]. 农业工程学报, 2013, 29(2):169-176.
Google Scholar
|
[18] |
Li X C, Xu X G, Wang J H, et al. Crop classification and recognition based on time series environmental satellite image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2):169-176.
Google Scholar
|
[19] |
Claire B. Monitoring US agriculture:The US department of agriculture,national agricultural statistics service,cropland data layer program[J]. Geocarto International, 2011, 26(5) :341-358.
Google Scholar
|
[20] |
Fiorillo E, Di Giuseppe E, Fontanelli G, et al. Lowland rice mapping in Sédhiou Region(Senegal) using Sentinel 1 and Sentinel 2 data and random forest[J]. Remote Sensing, 2020, 12(20):3403.
Google Scholar
|
[21] |
Jiao X, Kovacs J M, Shang J, et al. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data[J]. ISPRS Journal Photogrammetry Remote Sensing, 2014, 96:38-46.
Google Scholar
|
[22] |
Waske B, Schiefer S, Braun M. Random feature selection for decision tree classification of multi-temporal SAR data[C]// Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing,Denver,CO,USA, 2006:168-171.
Google Scholar
|
[23] |
李露, 徐维祥. 农村人口老龄化效应下农业生态效率的变化[J]. 华南农业大学学报(社会科学版), 2021, 20(2):14-29.
Google Scholar
|
[24] |
Li L, Xu W X. Changes of agricultural eco-efficiency under the effect of rural population aging[J]. Journal of South China Agricultural University(Social Science Edition), 2021, 20(2):14-29.
Google Scholar
|
[25] |
郭萍, 赵敏, 张妍, 等. 基于水足迹的河套灌区多目标种植结构优化调整与评价[J]. 农业机械学报, 2021, 52(12):346-357.
Google Scholar
|
[26] |
Guo P, Zhao M, Zhang Y, et al. Optimization adjustment and evaluation of multi-objective planting structure in Hetao irrigation area based on water footprint[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12):346-357.
Google Scholar
|
[27] |
叶初升, 马玉婷. 人力资本及其与技术进步的适配性何以影响了农业种植结构[J]. 中国农村经济, 2020(4):34-55.
Google Scholar
|
[28] |
Ye C S, Ma Y T. How human capital and its adaptation to technological progress affect agricultural planting structure[J]. Chinese Rural Economy, 2020(4):34-55.
Google Scholar
|
[29] |
刘琼, 肖海峰. 农地经营规模与财政支农政策对农业碳排放的影响[J]. 资源科学, 2020, 42(6):1063-1073.
Google Scholar
|
[30] |
Liu Q, Xiao H F. Effects of agricultural land management scale and financial policies on agricultural carbon emissions[J]. Resources Science, 2020, 42(6):1063-1073.
Google Scholar
|
[31] |
陈源源. 气候变化对中国粮食生产的影响[J]. 中国农学通报, 2021, 37(12):51-57.
Google Scholar
|
[32] |
Chen Y Y. Effects of climate change on grain production in China[J]. Chinese Agricultural Science Bulletin, 2021, 37(12):51-57.
Google Scholar
|
[33] |
邓振镛, 王强, 张强, 等. 中国北方气候暖干化对粮食作物的影响及应对措施[J]. 生态学报, 2010, 30(22):6278-6288.
Google Scholar
|
[34] |
Deng Z Y, Wang Q, Zhang Q, et al. Effects of climate warming and drying on grain crops in northern China and countermeasures[J]. Acta Ecologica Sinica, 2010, 30(22):6278-6288.
Google Scholar
|
[35] |
周惠成, 彭慧. 基于水资源合理利用的多目标农作物种植结构调整与评价[J]. 农业工程学报, 2007(9):45-49.
Google Scholar
|
[36] |
Zhou H C, Peng H. Multi-objective crop planting structure adjustment and evaluation based on rational utilization of water resources[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007(9):45-49.
Google Scholar
|
[37] |
武雪萍, 蔡典雄, 梅旭荣. 黄河流域农业水资源与水环境问题及技术对策[J]. 生态环境, 2007(1):248-252.
Google Scholar
|
[38] |
Wu X P, Cai D X, Mei X R. Problems and technical countermeasures of agricultural water resources and water environment in The Yellow River Basin[J]. Ecological Environment, 2007(1):248-252.
Google Scholar
|
[39] |
郭晓佳, 周荣, 李京忠. 黄河流域农业资源环境效率时空演化特征及影响因素[J]. 生态与农村环境学报, 2021, 37(3):332-340.
Google Scholar
|
[40] |
Guo X J, Zhou R, Li J Z. Problems and technical countermeasures of agricultural water resources and water environment in the Yellow River Basin[J]. Ecological Environment, 2021, 37(3):332-340.
Google Scholar
|
[41] |
张伟, 陈洪松, 王克林. 喀斯特峰丛洼地土壤养分空间分异特征及影响因子分析[J]. 中国农业科学, 2006(9):1828-1835.
Google Scholar
|
[42] |
Zhang W, Chen H S, Wang K L. Spatial differentiation characteristics and influencing factors of soil nutrients in Karst peak-depression[J]. Scientia Agricultura Sinica, 2006(9):1828-1835.
Google Scholar
|
[43] |
彭建. 喀斯特生态脆弱区土地利用/覆被变化研究[D]. 北京: 北京大学, 2006.
Google Scholar
|
[44] |
Peng J. Study on land use/cover change in Karst ecologically fragile region[D]. Beijing: Peking University, 2006.
Google Scholar
|
[45] |
张惠远, 赵昕奕, 蔡运龙, 等. 喀斯特山区土地利用变化的人类驱动机制研究——以贵州省为例[J]. 地理研究, 1999(2):25-31.
Google Scholar
|
[46] |
Zhang H Y, Zhao X Y, Cai Y L, et al. Human driving mechanism of land use change in Karst mountainous areas:A case study of Guizhou Province[J]. Geographical Research, 1999(2):25-31.
Google Scholar
|
[47] |
杨颖频, 吴志峰, 骆剑承. 时空协同的地块尺度作物分布遥感提取[J]. 农业工程学报, 2021, 37(7):166-174.
Google Scholar
|
[48] |
Yang Y P, Wu Z F, Luo J C. Remote sensing extraction of spatio-temporal synergistic crop distribution at plot scale[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7):166-174.
Google Scholar
|
[49] |
吴志峰, 骆剑承, 孙营伟. 时空协同的精准农业遥感研究[J]. 地球信息科学学报, 2020, 22(4):731-742.
Google Scholar
|
[50] |
Wu Z F, Luo J C, Sun Y W. Remote sensing research of precision agriculture based on spatio-temporal coordination[J]. Journal of Geo-Information Science, 2020, 22(4):731-742.
Google Scholar
|
[51] |
Zhu M, Zhou Z F, Huang D H, et al. Extraction method for single Zanthoxylum bungeanum in Karst mountain area based on UAV visible light images[J]. Journal of Applied Remote Sensing, 2021, 15(2):026501.
Google Scholar
|
[52] |
Xia L, Zhang X, Zhang J, et al. Building extraction from very-high-resolution remote sensing images using semi-supervised semantic edge detection[J]. Remote Sensing, 2021, 13(11):2187.
Google Scholar
|
[53] |
黄登红, 周忠发, 彭睿文, 等. 西南高原山区作物低空遥感挑战与研究进展——以贵州省为例[J]. 贵州师范大学学报(自然科学版), 2021, 39(5):53-61.
Google Scholar
|
[54] |
Huang D H, Zhou Z F, Peng R W, et al. Low altitude remote sensing challenge and research progress of crops in mountainous areas of southwest Plateau:A case study of Guizhou Province[J]. Journal of Guizhou Normal University(Natural Science), 2021, 39(5):53-61.
Google Scholar
|
[55] |
赵馨, 周忠发, 王玲玉. 喀斯特山区石漠化耕地遥感精准提取与分析——以贵州省北盘江镇与花江镇为例[J]. 热带地理, 2020, 40(2):289-302.
Google Scholar
|
[56] |
Zhao X, Zhou Z F, Wang L Y. Remote sensing precision extraction and analysis of rocky desertification cultivated land in Karst mountainous areas:A case study of Beipanjiang and Huajiang towns in Guizhou Province[J]. Tropical Geography, 2020, 40(2):289-302.
Google Scholar
|
[57] |
Lu H, Fu X, Liu C, et al. Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning[J]. Journal of Mountain Science, 2017, 14(4):731-741.
Google Scholar
|
[58] |
Hu X, Li X. Information extraction of subsided cultivated land in high-groundwater-level coal mines based on unmanned aerial vehicle visible bands[J]. Environmental Earth Sciences, 2019, 78(14):1-11.
Google Scholar
|
[59] |
崔鸿雁, 徐帅, 张利锋. 机器学习中的特征选择方法研究及展望[J]. 北京邮电大学学报, 2018, 41(1):1-12.
Google Scholar
|
[60] |
Cui H Y, Xu S, Zhang L F. Research and prospect of feature selection method in machine learning[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(1):1-12.
Google Scholar
|
[61] |
Xu Y, Pei J, Lai L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction[J]. Journal of Chemical Information and Modeling, 2017, 57(11):2672-2685.
Google Scholar
|
[62] |
Chen C, Zhang Q, Ma Q, et al. LightGBM-PPI:Predicting protein-protein interactions through LightGBM with multi-information fusion[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 191:54-64.
Google Scholar
|
[63] |
马晓君, 沙靖岚, 牛雪琪. 基于LightGBM算法的P2P项目信用评级模型的设计及应用[J]. 数量经济技术经济研究, 2018, 35(5):144-160.
Google Scholar
|
[64] |
Ma X J, Sha J L, Niu X Q. Design and application of P2P credit rating model based on LightGBM algorithm[J]. Journal of Quantitative and Technical Economics, 2018, 35(5):144-160.
Google Scholar
|
[65] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
Google Scholar
|
[66] |
Wang J F, Xu C D. Geographical detectors:Principles and prospects[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
Google Scholar
|
[67] |
Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region,China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127.
Google Scholar
|
[68] |
Liang J, Pan S, Chen W, et al. Cultivated land fragmentation and its influencing factors detection:A case study in Huaihe River Basin,China[J]. International Journal of Environmental Research and Public Health, 2021, 19(1):138.
Google Scholar
|
[69] |
Wang Z, Liang L, Sun Z, et al. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration[J]. Journal of Environmental Management, 2019, 243:227-239.
Google Scholar
|
[70] |
关岭自治县统计局. 关岭自治县2018年国民经济和社会发展统计公报[R]. 关岭: 关岭自治县统计局, 2018.
Google Scholar
|
[71] |
Guanling Autonomous County Statistics Bureau. Statistical bulletin of national economic and social development in Guanling Autonomous County in 2018[R]. Guanling: Guanling Autonomous County Stastics Bureau, 2018.
Google Scholar
|