| [1] |
Choi G, Robinson D, Kang S. Changing northern hemisphere snow seasons[J]. Journal of Climate, 2010, 23(19):5305-5310.
Google Scholar
|
| [2] |
车涛, 李新. 1993—2002年中国积雪水资源时空分布与变化特征[J]. 冰川冻土, 2005, 27(1):64-67.
Google Scholar
|
| [3] |
Che T, Li X. Spatial distribution and temporal variation of snow water resources in China during 1993—2002[J]. Journal of Glaciology and Geocryology, 2005, 27(1):64-67.
Google Scholar
|
| [4] |
胡汝骥. 中国积雪与雪灾防治[M]. 北京: 中国环境出版社, 2013.
Google Scholar
|
| [5] |
Hu R J. Snow and snow disaster in China[M]. Beijing: Chinese Environment Science Press, 2013.
Google Scholar
|
| [6] |
Shi J C, Xiong C, Jiang L M. Review of snow water equivalent microwave remote sensing[J]. Science China, 2016, 59(4):731-745.
Google Scholar
|
| [7] |
梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6):618-671.
Google Scholar
|
| [8] |
Liang S L, Bai R, Chen X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020, 24(6):618-671.
Google Scholar
|
| [9] |
蒋玲梅. 被动微波雪水当量研究[D]. 北京: 北京师范大学, 2005.
Google Scholar
|
| [10] |
Jiang L M. Passive microwave remote sensing of snow water equivalence study[D]. Beijing: Beijing Normal University, 2005.
Google Scholar
|
| [11] |
车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3):363-368.
Google Scholar
|
| [12] |
Che T, Li X, Gao F. Estimation of snow water equivalent in the Xizang Plateau using passive microwave remote sensing data(SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3):363-368.
Google Scholar
|
| [13] |
Josberger E G, Mognard N M. A passive microwave snow depth algorithm with a proxy for snow metamorphism[J]. Hydrological Processes, 2002, 16(8):1557-1568.
Google Scholar
|
| [14] |
李金亚, 杨秀春, 徐斌, 等. 基于MODIS与AMSR-E数据的中国6大牧区草原积雪遥感监测研究[J]. 地理科学, 2011, 31(9):1097-1104.
Google Scholar
|
| [15] |
Li J Y, Yang X C, Xu B, et al. Snow monitoring using MODIS and AMSR-E in six main pastoral areas of China[J]. Scientia Geographica Sinica, 2011, 31(9):1097-1104.
Google Scholar
|
| [16] |
车涛, 李新. 被动微波遥感估算雪水当量研究进展与展望[J]. 地球科学进展, 2004, 19(2):204-210.
Google Scholar
|
| [17] |
Che T, Li X. The development and prospect of estimating snow water equivalent using passive microwave remote sensing data[J]. Advances in Earth Science, 2004, 19(2):204-210.
Google Scholar
|
| [18] |
李新, 车涛. 积雪被动微波遥感研究进展[J]. 冰川冻土, 2007, 29(3):487-496.
Google Scholar
|
| [19] |
Li X, Che T. A review on passive microwave remote sensing of snow cover[J]. Journal of Glaciology and Geocryology, 2007, 29(3):487-496.
Google Scholar
|
| [20] |
Pulliainen J T, Grandell J, Hallikainen M T. HUT snow emission model and its applicability to snow water equivalent retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1378-1390.
Google Scholar
|
| [21] |
Wiesmann A, Matzler C. Microwave emission model of layered snow packs[J]. Remote Sensing of Environment, 1999, 70(3):307-316.
Google Scholar
|
| [22] |
Tsang L, Chen C T, Chang A T, et al. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow[J]. Radio Science, 2000, 35(3):731-749.
Google Scholar
|
| [23] |
Du J, Shi J, Rott H. Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model[J]. Remote Sensing of Environment, 2010, 114(5):1089-1098.
Google Scholar
|
| [24] |
Ding K H, Xu X, Tsang L. Electromagnetic scattering by Bicontinuous random microstructures with discrete permittivities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8):3139-3151.
Google Scholar
|
| [25] |
Chang A T C, Foster J L, Hall D K. Nimbus-7 SMMR derived global snow cover parameters[J]. Annals of Glaciology, 1987, 9:39-44.
Google Scholar
|
| [26] |
Foster J L, Chang A T C, Hall D K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm,a revised algorithm and a snow depth climatology[J]. Remote Sensing of Environment, 1997, 62(2):132-142.
Google Scholar
|
| [27] |
车涛. 积雪被动微波遥感反演与积雪数据同化方法研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2006.
Google Scholar
|
| [28] |
Che T. Study on passive microwave remote sensing of snow and snow data assimilation method[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,CAS, 2006.
Google Scholar
|
| [29] |
Che T, Xin L, Jin R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49(1):145-154.
Google Scholar
|
| [30] |
Jiang L M, Wang P, Zhang L X, et al. Improvement of snow depth retrieval for FY3B-MWRI in China[J]. Science China Earth Science, 2014, 57(6):1278-1292.
Google Scholar
|
| [31] |
Kelly R. The AMSR-E snow depth algorithm:Description and initial results[J]. Journal of the Remote Sensing Society of Japan, 2009, 29(1):307-317.
Google Scholar
|
| [32] |
王建, 钟歆玥, 戴礼云, 等. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1):12-26.
Google Scholar
|
| [33] |
Wang J, Zhong X Y, Dai L Y, et al. Investigation on the characteristics and distribution of snow cover in China[J]. Advances in Earth Science, 2018, 33(1):12-26.
Google Scholar
|
| [34] |
王子龙, 胡石涛, 付强, 等. 积雪参数遥感反演研究进展[J]. 东北农业大学学报, 2016, 47(9):100-106.
Google Scholar
|
| [35] |
Wang Z L, Hu S T, Fu Q, et al. Research progress in remote sensing inversion of snow cover parameters[J]. Journal of Northeast Agricultural University, 2016, 47(9):100-106.
Google Scholar
|
| [36] |
马丽娟, 秦大河. 1957—2009年中国台站观测的关键积雪参数时空变化特征[J]. 冰川冻土, 2012, 34(1):1-11.
Google Scholar
|
| [37] |
Ma L J, Qin D H. Spatial-temporal characteristics of observed key parameters for snow cover in China during 1957—2009[J]. Journal of Glaciology and Geocryology, 2012, 34(1):1-11.[26] 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003:151-153.
Google Scholar
[26] China Meteorological Administration. Ground meteorological observation specifications[M]. Beijing: China Meteorological Press, 2003:151-153.
Google Scholar
|
| [38] |
邱玉宝, 卢洁羽, 石利娟, 等. 高亚洲地区被动微波遥感雪水当量数据集[J]. 中国科学数据(中英文网络版), 2019, 4(1):110-125.
Google Scholar
|
| [39] |
Qiu Y B, Lu J Y, Shi L J, et al. Passive microwave remote sensing snow water equivalent data set in high Asia area[J]. Scientific Data in China(Chinese-English Online Edition), 2019, 4(1):110-125.
Google Scholar
|
| [40] |
Dozier J, Painter T. Multispectral and hyperspectral remote sensing of alpine snow properties[J]. Annual Review of Earth and Planetary Sciences, 2004, 21(1):465-494.
Google Scholar
|
| [41] |
梁顺林, 李小文, 王锦地. 定量遥感:理念与算法(第二版)[M]. 北京: 科学出版社, 2019:718-719.
Google Scholar
|
| [42] |
Liang S L, Li X W, Wang J D. Quantitative remote sensing:Ideas and algorithms (second edition)[M]. Beijing: Science Press, 2019: 718-719.
Google Scholar
|
| [43] |
Tedesco M, Pulliainen J, Takala, et al. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data[J]. Remote Sensing of Environment, 2004, 90(1):76-85.
Google Scholar
|
| [44] |
Kunkee D B, Swadley S D, Poe G A, et al. Special sensor microwave imager sounder (SSMIS) radiometric calibration anomalies—part I:Identification and characterization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4):1017-1033.
Google Scholar
|
| [45] |
Gan Y, Zhang Y, Kongoli C, et al. Evaluation and blending of ATMS and AMSR2 snow water equivalent retrievals over the conterminous United States[J]. Remote Sensing of Environment, 2021, 254:112280.
Google Scholar
|
| [46] |
孙知文, 施建成, 杨虎, 等. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2):264-267.
Google Scholar
|
| [47] |
Sun Z W, Shi J C, Yang H, et al. A study on snow depth estimating and snow water equivalent algorithm for FY-3 MWRI[J]. Remote Sensing Technology and Application, 2007, 22(2):264-267.
Google Scholar
|
| [48] |
Armstrong R L, Brodzik M J. Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms[J]. Annals of Glaciology, 2002, 34(1):38-44.
Google Scholar
|
| [49] |
Foster J L, Sun C, Walker J P, et al. Quantifying the uncertainty in passive microwave snow water equivalent observations[J]. Remote Sensing of Environment, 2005, 94(2):187-203.
Google Scholar
|
| [50] |
Tedesco M, Jeyaratnam J. A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures[J]. Remote Sensing, 2016, 8(12):1-25.
Google Scholar
|
| [51] |
Yang J W, Jiang L M, Wu S L, et al. Development of a snow depth estimation algorithm over China for the FY-3D/MWRI[J]. Remote Sensing, 2019, 11(8):1-21.
Google Scholar
|
| [52] |
孙知文, 于鹏珊, 夏浪, 等. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
Google Scholar
|
| [53] |
Sun Z W, Yu P S, Xia L, et al. Progress in study of snow parameter inversion by passive remote sensing[J]. Remote Sensing for Land and Resources, 2015, 27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
Google Scholar
|
| [54] |
Stiles W H, Ulaby F T, Rango A. Microwave measurements of snowpack properties[J]. Nordic Hydrology, 1981, 12(3):143-166.
Google Scholar
|
| [55] |
Che T, Dai L, Zheng X, et al. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China[J]. Remote Sensing of Environment, 2016, 183:334-349.
Google Scholar
|
| [56] |
Sturm M, Brian T, Glen L, et al. Estimating snow water equivalent using snow depth data and climate classes[J]. Journal of Hydrometeorology, 2010, 11(6):1380-1394.
Google Scholar
|
| [57] |
Jiang L M, Shi J C, Tjuatja S. Estimation of snow water equivalence using the polarimetric scanning radiometer from the Cold Land Processes Experiments(CLPX03)[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):359-363.
Google Scholar
|
| [58] |
Pan J, Durand M T, Jagt B J V, et al. Application of a Markov chain Monte Carlo algorithm for snow water equivalent retrieval from passive microwave measurements[J]. Remote Sensing of Environment, 2017, 192:150-165.
Google Scholar
|
| [59] |
Royer A, Roy A, Montpetit B, et al. Comparison of commonly-used microwave radiative transfer models for snow remote sensing[J]. Remote Sensing of Environment, 2017, 190:247-259.
Google Scholar
|
| [60] |
蒋玲梅, 崔慧珍, 王功雪, 等. 积雪、土壤冻融与土壤水分遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(6):1237-1262.
Google Scholar
|
| [61] |
Jiang L M, Cui H Z, Wang G X, et al. Progress on remote sensing of snow,surface soil frozen/thaw state and soil moisture[J]. Remote Sensing Technology and Application, 2020, 35(6):1237-1262.
Google Scholar
|
| [62] |
Forman B A, Reichle R H, Derksen C. Estimating passive microwave brightness temperature over snow-covered land in North America using a land surface model and an artificial neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1):235-248.
Google Scholar
|
| [63] |
Forman B A, Reichle R H. Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow covered land in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9):4431-4441.
Google Scholar
|
| [64] |
Xiao X, Zhang T, Zhong X, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sensing of Environment, 2018, 210(7):48-64.
Google Scholar
|
| [65] |
Yang J, Jiang L, Luojus K, et al. Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach[J]. The Cryosphere, 2020, 14(6):1763-1778.
Google Scholar
|
| [66] |
Bair E H, Andre A C, Karl R. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan[J]. The Cryosphere, 2018, 12(5):1579-1594.
Google Scholar
|
| [67] |
Durand M T, Liu D S. The need for prior information in characterizing snow water equivalent from microwave brightness temperatures[J]. Remote Sensing of Environment, 2012, 126(4):248-257.
Google Scholar
|
| [68] |
肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6):590-605.
Google Scholar
|
| [69] |
Xiao X X, Zhang T J. Passive microwave remote sensing of snow depth and snow water equivalent:Overview[J]. Advances in Earth Science, 2018, 33(6):590-605.
Google Scholar
|
| [70] |
郭建平, 刘欢, 安林昌, 等. 2001—2012年青藏高原积雪覆盖率变化及地形影响[J]. 高原气象, 2016, 35(1):24-33.
Google Scholar
|
| [71] |
Guo J P, Liu H, An L C, et al. Changes in the snow cover rate of the Xizang Plateau from 2001 to 2012 and the influence of terrain[J]. Plateau Meteorology, 2016, 35(1):24-33.
Google Scholar
|
| [72] |
郝大磊, 肖青, 闻建光, 等. 定量遥感升尺度转换方法研究进展[J]. 遥感学报, 2018, 22(3):408-423.
Google Scholar
|
| [73] |
Hao D L, Xiao Q, Wen J G, et al. Advances in up-scaling methods of quantitative remote sensing[J]. Journal of Remote Sensing, 2018, 22(3):408-423.
Google Scholar
|
| [74] |
李长春, 包安明, 岳继博, 等. 基于地形校正的山区积雪深度反演算法[J]. 干旱区研究, 2016, 33(5):927-933.
Google Scholar
|
| [75] |
Li C C, Bao A M, Yue J B, et al. Mountain snow depth inversion algorithm based on terrain correction[J]. Arid Zone Research, 2016, 33(5):927-933.
Google Scholar
|
| [76] |
李晓静, 刘玉洁, 朱小祥, 等. 利用SSM/I数据判识我国及周边地区雪盖[J]. 应用气象学报, 2007, 18(1):12-20.
Google Scholar
|
| [77] |
Li X J, Liu Y J, Zhu X X, et al. Using SSM/I data to identify snow cover in my country and surrounding areas[J]. Journal of Applied Meteorology, 2007, 18(1):12-20.
Google Scholar
|
| [78] |
黄晓东, 李旭冰, 刘畅宇, 等. 青藏高原积雪范围和雪深/雪水当量遥感反演研究进展及挑战[J]. 冰川冻土, 2019, 41(5):1138-1149.
Google Scholar
|
| [79] |
Huang X D, Li X B, Liu C Y, et al, Remote sensing inversion of snow cover extent and snow depth/snow water equivalent on the Qinghai-Xizang Plateau:Advance and challenge[J]. Glaciology and Geocryology, 2019, 41(5):1138-1149.
Google Scholar
|
| [80] |
Liang T G, Zhang X T, Xie H J, et al. Towards improved daily snow cover map with advanced combination of MODIS and AMSR-E measurements[J]. Remote Sensing of Environment, 2008, 112(10):3750-3761.
Google Scholar
|
| [81] |
Gao Y, Xie H J, Lu N, et al. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra Aqua MODIS and Aqua AMSR-E measurements[J]. Journal of Hydrolo-gy, 2010, 385(1):23-35.
Google Scholar
|
| [82] |
Huang X D, Deng J, Ma X F, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China[J]. The Cryosphere, 2016, 10(5):2453-2463.
Google Scholar
|
| [83] |
Wang Y L, Huang X D, Wang J S, et al. AMSR2 snow depth down scaling algorithm based on a multifactor approach over the Xizang Plateau,China[J]. Remote Sensing of Environment, 2019, 231:111268.
Google Scholar
|
| [84] |
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11):1247-1253.
Google Scholar
|
| [85] |
Che T, Hao X H, Dai L Y, et al. Snowcover variation and its impacts over the Qinghai-Xizang Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1247-1253.
Google Scholar
|
| [86] |
Huang X D, Liu C Y, Wang Y L, et al. Snow cover variations across China from 1951—2018[J]. The Cryosphere Discussions, 2020. doi: 10.5194/tc-2020-202.
Google Scholar
|
| [87] |
Senan R, Orsolini Y J, Weisheimer A, et al. Impact of springtime Himalayan-Xizang Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts[J]. Climate Dynamics, 2016, 47(9):2709-2725.
Google Scholar
|
| [88] |
王顺久. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J]. 高原气象, 2017, 36(5):1153-1164.
Google Scholar
|
| [89] |
Wang S J. Progresses in variability of snow cover over the Qinghai-Xizang Plateau and its impact on water resources in China[J]. Plateau Meteorology, 2017, 36(5):1153-1164.[66] Fang Y H, Zhang X, Niu G Y, et al. Study of the spatiotemporal characteristics of meltwater contribution to the total runoff in the upper Changjiang River basin[J]. Water, 2017, 9(3):165.
Google Scholar
|