China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 34, No. 3
Article Contents

ZHA Dongping, CAI Haisheng, ZHANG Xueling, HE Qinggang. 2022. Extraction of paddy fields using multi-temporal Sentinel-1 images. Remote Sensing for Natural Resources, 34(3): 184-195. doi: 10.6046/zrzyyg.2021320
Citation: ZHA Dongping, CAI Haisheng, ZHANG Xueling, HE Qinggang. 2022. Extraction of paddy fields using multi-temporal Sentinel-1 images. Remote Sensing for Natural Resources, 34(3): 184-195. doi: 10.6046/zrzyyg.2021320

Extraction of paddy fields using multi-temporal Sentinel-1 images

  • The monitoring and information extraction of paddy fields using remote sensing techniques is an important means for modern agricultural management. However, it is difficult to obtain effective optical monitoring data of south China due to the frequent cloudy and rainy weather in spring and summer in this area. To accurately extract information on paddy fields in areas subject to frequent cloudy and rainy weather, this study investigated the paddy fields in Jiangxiang Town in Nanchang County, Jiangxi Province, using multi-temporal Sentinel-1 SAR data as the data source. Specifically, this study calculated the J-M distance between paddy fields and other land types in different phenological periods, analyzed the changes in the distance based on the backscattering coefficients of various land types in key phenological periods, and then obtained the best phenological images for the information extraction of paddy fields. Afterward, this study conducted ground object classification using methods such as random forest, maximum likelihood, support vector machine, and neural network and then compared and verified the classification accuracy. The results are as follows. The combined SAR data of the different stages including booting stage (June 14), trefeil stage (April 21), transplantion period (May 3), and transplanting peried of second season late rice (July 26) is the optimal temporal combination for the information extraction of paddy fields. Higher classification accuracy of ground objects in the study area can be obtained using the random forest method, with overall classification accuracy of up to 0.943 and a Kappa coefficient of 0.932. This study conducted the mapping of paddy fields in areas with frequent cloudy and rainy weather using SAR data and will provide important references for the temporal selection and classification.
  • 加载中
  • [1] Lu Z, Wang D Q, Deng Z D, et al. Application of red edge band in remote sensing extraction of surface water body:A case study based on GF-6 WFV data in arid area[J]. Hydrology Research, 2021, 52(6):1526-1541.

    Google Scholar

    [2] 吴炳方, 张淼, 曾红伟, 等. 全球农情遥感速报系统20年[J]. 遥感学报, 2019, 23(6):1053-1063.

    Google Scholar

    [3] Wu B F, Zhang M, Zeng H W, et al. Twenty years of crop watch:Progress and prospect[J]. Journal of Remote Sensing, 2019, 23(6):1053-1063.

    Google Scholar

    [4] 杨知. 基于极化SAR的水稻物候期监测与参数反演研究[D]. 北京: 中国科学院大学, 2017.

    Google Scholar

    [5] Yang Z. Rice phenology estimation and parameter retrieval based on polarimetric synthetic aperture radar[D]. Beijing: The University of Chinese Academy of Sciences, 2017.

    Google Scholar

    [6] Perros N, Kalivas D, Giovos R. Spatial analysis of agronomic data and UAV imagery for rice yield estimation[J]. Agriculture, 2021, 11(9):809.

    Google Scholar

    [7] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5):748-767.

    Google Scholar

    [8] Chen Z X, Ren J Q, Tang H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5):748-767.

    Google Scholar

    [9] 陈怀亮, 李颖, 张红卫. 农作物长势遥感监测业务化应用与研究进展[J]. 气象与环境科学, 2015, 38(1):95-102.

    Google Scholar

    [10] Chen H L, Li Y, Zhang H W. Operational application and research review of crop growth monitoring with remote sensing[J]. Meteorological and Environmental Sciences, 2015, 38(1):95-102.

    Google Scholar

    [11] Zhu L H, Liu X N, Wu L, et al. Detection of paddy rice cropping systems in southern China with time series Landsat images and phenology-based algorithms[J]. GIScience & Remote Sensing, 2021, 58(5):1-23.

    Google Scholar

    [12] Cao J J, Cai X L, Tan J W, et al. Mapping paddy rice using Landsat time series data in the Ganfu Plain irrigation system,Southern China,from 1988-2017[J]. International Journal of Remote Sensing, 2021, 42(4):1556-1576.

    Google Scholar

    [13] Li R Y, Xu M Q, Chen Z Y, et al. Phenology-based classification of crop species and rotation types using fused MODIS and Landsat data:The comparison of a random-forest-based model and a decision-rule-based model[J]. Soil and Tillage Research, 2021, 206:104838.

    Google Scholar

    [14] Chandna P, Mondal S. Analyzing multi-year rice-fallow dynamics in Odisha using multi-temporal Landsat-8 OLI and Sentinel-1 Data[J]. GIScience & Remote Sensing, 2020, 57(4):431-449.

    Google Scholar

    [15] 杨辉山, 谢萍. 华南地区季度性全覆盖卫星影像获取方案优化[J]. 测绘与空间地理信息, 2019, 42(5):159-162.

    Google Scholar

    [16] Yang H S, Xie P. Optimized solution of the high frequency and full coverage of satellite images acquisition in southern China[J]. Geomatics & Spatial Information Technology, 2019, 42(5):159-162.

    Google Scholar

    [17] Gasnier N, Denis L, Fjrtoft R, et al. Narrow river extraction from SAR images using exogenous information[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5720-5734.

    Google Scholar

    [18] Chang L, Chen Y T, Wang J H, et al. Rice-field mapping with sentinel-1A SAR time-series data[J]. Remote Sensing, 2021, 13(1):103.

    Google Scholar

    [19] Wu X X, Washaya P, Liu L, et al. Rice yield estimation based on spaceborne SAR:A review from 1988 to 2018[J]. IEEE Access, 2020(8):157462-157469.

    Google Scholar

    [20] Son N T, Chen C F, Chen C R, et al. A phenological object-based approach for rice crop classification using time-series Sentinel-1 synthetic aperture Radar (SAR) data in Taiwan[J]. International Journal of Remote Sensing, 2021, 42(7):2722-2739.

    Google Scholar

    [21] Graman M, Kaliaperumal R, Pazhanivelan S, et al. Rice area estimation using parameterized classification of sentinel 1A SAR data[J]. ISPRS - International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2019, XLII-3/W6:141-147.

    Google Scholar

    [22] Zhu H L, Wang W Y, Leung R. SAR target classification based on Radar image luminance analysis by deep learning[J]. IEEE Sensors Letters, 2020, 4(3):1-4.

    Google Scholar

    [23] Bianchi F, Espeseth M, Borch N. Large-scale detection and categorization of oil spills from SAR images with deep learning[J]. Remote Sensing, 2020, 12(14):2260.

    Google Scholar

    [24] 邓刚, 唐志光, 李朝奎, 等. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2):177-185.doi: 10.6046/gtzyyg.2020.02.23.

    Google Scholar

    [25] Deng G, Tang Z G, Li C K, et al. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land and Resources, 2020, 32(2):177-185.doi: 10.6046/gtzyyg.2020.02.23.

    Google Scholar

    [26] 张悦琦, 李荣平, 穆西晗, 等. 基于多时相GF-6遥感影像的水稻种植面积提取[J]. 农业工程学报, 2021, 37(17):189-196.

    Google Scholar

    [27] Li Y Q, Li R P, Mu X H, et al. Extraction of paddy rice planting areas based on multi-temporal GF-6 remote sensing image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17):189-196.

    Google Scholar

    [28] Woodhouse I. Introduction to microwave remote sensing[M]. USA: CRC Press, 2017:157-158.

    Google Scholar

    [29] Xu Z. Wavelength-resolution SAR speckle model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.

    Google Scholar

    [30] Hu C B, Laurent L F, Kuang G Y. Ship discrimination using polarimetric SAR data and coherent time-frequency analysis[J]. Remote Sensing, 2013, 5(12):6899-6920.

    Google Scholar

    [31] Luo Y J, Zhao Y S, Li X W, et al. Research and application of multi-angle polarization characteristics of water body mirror reflection[J]. Science in China(Series D:Earth Sciences), 2007, 50(6):946-952.

    Google Scholar

    [32] Jang J W, Kim T Y, Lim S B. RF Interference analysis and verification in the synthetic aperture Radar satellite system[J]. Aerospace Engineering and Technology, 2009, 8(1):187-196.

    Google Scholar

    [33] 吴琳琳, 李晓燕, 毛德华, 等. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1):127-134.doi: 10.6046/zrzyyg.2021061.

    Google Scholar

    [34] Wu L L, Li X Y, Mao D H, et al. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1):127-134.doi: 10.6046/zrzyyg.2021061.

    Google Scholar

    [35] 桂预风, 李振平, 万爽, 等. 收敛性随机森林模型及其遥感应用[J]. 数学的实践与认识, 2015, 45(18):207-212.

    Google Scholar

    [36] Gui Y F, Li Z P, Wan S, et al. Convergent random forests model and its application in remote sensing[J]. Mathematics in Practice and Theory, 2015, 45(18):207-212.

    Google Scholar

    [37] 吕岚. 基于随机森林的快速兴趣点检测[J]. 自动化技术与应用, 2016, 35(9):95-100.

    Google Scholar

    [38] Lyu L. A fast interest point detector based on random forest[J]. Techniques of Automation and Applications, 2016, 35(9):95-100.

    Google Scholar

    [39] 韩冰冰, 陈圣波, 曾庆鸿, 等. 基于J-M距离的多时相Sentinel-1农作物分类[J]. 科学技术与工程, 2020, 20(17):6977-6982.

    Google Scholar

    [40] Han B B, Chen S B, Zeng Q H, et al. Time-series classification of Sentinel-1 data based on J-M distance[J] Science Technology and Engineering, 2020, 20(17):6977-6982.

    Google Scholar

    [41] 刘警鉴, 李洪忠, 华璀, 等. 基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020, 32(1):191-199.doi: 10.6046/gtzyyg.2020.01.26.

    Google Scholar

    [42] Liu J J, Li H Z, Hua C, et al. Extraction of early paddy rice area in Lingao county based on sentinel-1A data[J]. Remote Sensing for Land and Resources, 2020, 32(1):191-199.doi: 10.6046/gtzyyg.2020.01.26.

    Google Scholar

    [43] 马腾耀, 肖鹏峰, 张学良, 等. 基于特征优选的GF-3全极化数据积雪识别[J]. 遥感技术与应用, 2020, 35(6):1292-1302.

    Google Scholar

    [44] Ma T Y, Xiao P F, Zhang X L, et al. Recognition of snow cover based on features selection in GF-3 fully polarimetric data[J]. Remote Sensing Technology and Application, 2020, 35(6):1292-1302.

    Google Scholar

    [45] 张颖, 高倩倩. 基于随机森林分类算法的巢湖水质评价[J]. 环境工程学报, 2016, 10(2):992-998.

    Google Scholar

    [46] Zhang Y, Gao Q Q. Water quality evaluation of Chaohu Lake based on random forest method[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):992-998.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1077) PDF downloads(144) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint