| [1] |
Lu Z, Wang D Q, Deng Z D, et al. Application of red edge band in remote sensing extraction of surface water body:A case study based on GF-6 WFV data in arid area[J]. Hydrology Research, 2021, 52(6):1526-1541.
Google Scholar
|
| [2] |
吴炳方, 张淼, 曾红伟, 等. 全球农情遥感速报系统20年[J]. 遥感学报, 2019, 23(6):1053-1063.
Google Scholar
|
| [3] |
Wu B F, Zhang M, Zeng H W, et al. Twenty years of crop watch:Progress and prospect[J]. Journal of Remote Sensing, 2019, 23(6):1053-1063.
Google Scholar
|
| [4] |
杨知. 基于极化SAR的水稻物候期监测与参数反演研究[D]. 北京: 中国科学院大学, 2017.
Google Scholar
|
| [5] |
Yang Z. Rice phenology estimation and parameter retrieval based on polarimetric synthetic aperture radar[D]. Beijing: The University of Chinese Academy of Sciences, 2017.
Google Scholar
|
| [6] |
Perros N, Kalivas D, Giovos R. Spatial analysis of agronomic data and UAV imagery for rice yield estimation[J]. Agriculture, 2021, 11(9):809.
Google Scholar
|
| [7] |
陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5):748-767.
Google Scholar
|
| [8] |
Chen Z X, Ren J Q, Tang H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5):748-767.
Google Scholar
|
| [9] |
陈怀亮, 李颖, 张红卫. 农作物长势遥感监测业务化应用与研究进展[J]. 气象与环境科学, 2015, 38(1):95-102.
Google Scholar
|
| [10] |
Chen H L, Li Y, Zhang H W. Operational application and research review of crop growth monitoring with remote sensing[J]. Meteorological and Environmental Sciences, 2015, 38(1):95-102.
Google Scholar
|
| [11] |
Zhu L H, Liu X N, Wu L, et al. Detection of paddy rice cropping systems in southern China with time series Landsat images and phenology-based algorithms[J]. GIScience & Remote Sensing, 2021, 58(5):1-23.
Google Scholar
|
| [12] |
Cao J J, Cai X L, Tan J W, et al. Mapping paddy rice using Landsat time series data in the Ganfu Plain irrigation system,Southern China,from 1988-2017[J]. International Journal of Remote Sensing, 2021, 42(4):1556-1576.
Google Scholar
|
| [13] |
Li R Y, Xu M Q, Chen Z Y, et al. Phenology-based classification of crop species and rotation types using fused MODIS and Landsat data:The comparison of a random-forest-based model and a decision-rule-based model[J]. Soil and Tillage Research, 2021, 206:104838.
Google Scholar
|
| [14] |
Chandna P, Mondal S. Analyzing multi-year rice-fallow dynamics in Odisha using multi-temporal Landsat-8 OLI and Sentinel-1 Data[J]. GIScience & Remote Sensing, 2020, 57(4):431-449.
Google Scholar
|
| [15] |
杨辉山, 谢萍. 华南地区季度性全覆盖卫星影像获取方案优化[J]. 测绘与空间地理信息, 2019, 42(5):159-162.
Google Scholar
|
| [16] |
Yang H S, Xie P. Optimized solution of the high frequency and full coverage of satellite images acquisition in southern China[J]. Geomatics & Spatial Information Technology, 2019, 42(5):159-162.
Google Scholar
|
| [17] |
Gasnier N, Denis L, Fjrtoft R, et al. Narrow river extraction from SAR images using exogenous information[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5720-5734.
Google Scholar
|
| [18] |
Chang L, Chen Y T, Wang J H, et al. Rice-field mapping with sentinel-1A SAR time-series data[J]. Remote Sensing, 2021, 13(1):103.
Google Scholar
|
| [19] |
Wu X X, Washaya P, Liu L, et al. Rice yield estimation based on spaceborne SAR:A review from 1988 to 2018[J]. IEEE Access, 2020(8):157462-157469.
Google Scholar
|
| [20] |
Son N T, Chen C F, Chen C R, et al. A phenological object-based approach for rice crop classification using time-series Sentinel-1 synthetic aperture Radar (SAR) data in Taiwan[J]. International Journal of Remote Sensing, 2021, 42(7):2722-2739.
Google Scholar
|
| [21] |
Graman M, Kaliaperumal R, Pazhanivelan S, et al. Rice area estimation using parameterized classification of sentinel 1A SAR data[J]. ISPRS - International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2019, XLII-3/W6:141-147.
Google Scholar
|
| [22] |
Zhu H L, Wang W Y, Leung R. SAR target classification based on Radar image luminance analysis by deep learning[J]. IEEE Sensors Letters, 2020, 4(3):1-4.
Google Scholar
|
| [23] |
Bianchi F, Espeseth M, Borch N. Large-scale detection and categorization of oil spills from SAR images with deep learning[J]. Remote Sensing, 2020, 12(14):2260.
Google Scholar
|
| [24] |
邓刚, 唐志光, 李朝奎, 等. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2):177-185.doi: 10.6046/gtzyyg.2020.02.23.
Google Scholar
|
| [25] |
Deng G, Tang Z G, Li C K, et al. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land and Resources, 2020, 32(2):177-185.doi: 10.6046/gtzyyg.2020.02.23.
Google Scholar
|
| [26] |
张悦琦, 李荣平, 穆西晗, 等. 基于多时相GF-6遥感影像的水稻种植面积提取[J]. 农业工程学报, 2021, 37(17):189-196.
Google Scholar
|
| [27] |
Li Y Q, Li R P, Mu X H, et al. Extraction of paddy rice planting areas based on multi-temporal GF-6 remote sensing image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17):189-196.
Google Scholar
|
| [28] |
Woodhouse I. Introduction to microwave remote sensing[M]. USA: CRC Press, 2017:157-158.
Google Scholar
|
| [29] |
Xu Z. Wavelength-resolution SAR speckle model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
Google Scholar
|
| [30] |
Hu C B, Laurent L F, Kuang G Y. Ship discrimination using polarimetric SAR data and coherent time-frequency analysis[J]. Remote Sensing, 2013, 5(12):6899-6920.
Google Scholar
|
| [31] |
Luo Y J, Zhao Y S, Li X W, et al. Research and application of multi-angle polarization characteristics of water body mirror reflection[J]. Science in China(Series D:Earth Sciences), 2007, 50(6):946-952.
Google Scholar
|
| [32] |
Jang J W, Kim T Y, Lim S B. RF Interference analysis and verification in the synthetic aperture Radar satellite system[J]. Aerospace Engineering and Technology, 2009, 8(1):187-196.
Google Scholar
|
| [33] |
吴琳琳, 李晓燕, 毛德华, 等. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1):127-134.doi: 10.6046/zrzyyg.2021061.
Google Scholar
|
| [34] |
Wu L L, Li X Y, Mao D H, et al. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1):127-134.doi: 10.6046/zrzyyg.2021061.
Google Scholar
|
| [35] |
桂预风, 李振平, 万爽, 等. 收敛性随机森林模型及其遥感应用[J]. 数学的实践与认识, 2015, 45(18):207-212.
Google Scholar
|
| [36] |
Gui Y F, Li Z P, Wan S, et al. Convergent random forests model and its application in remote sensing[J]. Mathematics in Practice and Theory, 2015, 45(18):207-212.
Google Scholar
|
| [37] |
吕岚. 基于随机森林的快速兴趣点检测[J]. 自动化技术与应用, 2016, 35(9):95-100.
Google Scholar
|
| [38] |
Lyu L. A fast interest point detector based on random forest[J]. Techniques of Automation and Applications, 2016, 35(9):95-100.
Google Scholar
|
| [39] |
韩冰冰, 陈圣波, 曾庆鸿, 等. 基于J-M距离的多时相Sentinel-1农作物分类[J]. 科学技术与工程, 2020, 20(17):6977-6982.
Google Scholar
|
| [40] |
Han B B, Chen S B, Zeng Q H, et al. Time-series classification of Sentinel-1 data based on J-M distance[J] Science Technology and Engineering, 2020, 20(17):6977-6982.
Google Scholar
|
| [41] |
刘警鉴, 李洪忠, 华璀, 等. 基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020, 32(1):191-199.doi: 10.6046/gtzyyg.2020.01.26.
Google Scholar
|
| [42] |
Liu J J, Li H Z, Hua C, et al. Extraction of early paddy rice area in Lingao county based on sentinel-1A data[J]. Remote Sensing for Land and Resources, 2020, 32(1):191-199.doi: 10.6046/gtzyyg.2020.01.26.
Google Scholar
|
| [43] |
马腾耀, 肖鹏峰, 张学良, 等. 基于特征优选的GF-3全极化数据积雪识别[J]. 遥感技术与应用, 2020, 35(6):1292-1302.
Google Scholar
|
| [44] |
Ma T Y, Xiao P F, Zhang X L, et al. Recognition of snow cover based on features selection in GF-3 fully polarimetric data[J]. Remote Sensing Technology and Application, 2020, 35(6):1292-1302.
Google Scholar
|
| [45] |
张颖, 高倩倩. 基于随机森林分类算法的巢湖水质评价[J]. 环境工程学报, 2016, 10(2):992-998.
Google Scholar
|
| [46] |
Zhang Y, Gao Q Q. Water quality evaluation of Chaohu Lake based on random forest method[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):992-998.
Google Scholar
|