[1] |
Anderson M C, Norman J M, Kustas W P, et al. A thermal-based remote sensing technique for routine mapping of land-surface carbon,water and energy fluxes from field to regional scales[J]. Remote Sensing of Environment, 2008, 112:4227-4241.
Google Scholar
|
[2] |
唐国利, 任国玉. 近百年中国地表气温变化趋势的再分析[J]. 气候与环境研究, 2005(4):791-798.
Google Scholar
|
[3] |
Tang G L, Ren G Y. Reanalysis of surface air temperature change of the last 100 years over China[J]. Climatic and Environmental Research, 2005(4):791-798.
Google Scholar
|
[4] |
Brunsell N A, Gillies R R. Length scale analysis of surface energy fluxes derived from remote sensing[J]. Journal of Hydrometeorology, 2003, 4(6):1212-1219.
Google Scholar
|
[5] |
毛克彪, 左志远, 朱高峰, 等. 全球气候和生态系统变化与星体轨道位置变化关系研究[J]. 高技术通讯, 2016, 26(11):890-899.
Google Scholar
|
[6] |
Mao K B, Zuo Z Y, Zhu G F, et al. Study of the relationship between global climate-ecosystem’s change and planetary orbit position’s change[J]. High Technology Letters, 2016, 26(11):890-899.
Google Scholar
|
[7] |
王建凯, 王开存, 王普才. 基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J]. 遥感学报, 2007(3):330-339.
Google Scholar
|
[8] |
Wang J K, Wang K C, Wang P C. Urban heat (or cool) island over Beijing from MODIS land surface temperature[J]. Journal of Remote Sensing, 2007(3):330-339.
Google Scholar
|
[9] |
Guo J, Mao K, Zhao Y, et al. Impact of climate on food security in Mainland China:A new perspective based on characteristics of major agricultural natural disasters and grain loss[J]. Sustainability, 2019, 869(11):1-25.
Google Scholar
|
[10] |
Hall D K, Williams R S, Luthcke S B, et al. Greenland ice sheet surface temperature,melt and mass loss:2000—06[J]. Journal of Glaciology, 2008, 54(184):81-93.
Google Scholar
|
[11] |
Xia L, Zhao F, Mao K, et al. SPI-based analyses of drought changes over the past 60 years in China’s major crop-growing areas[J]. Remote Sensing, 2018, 171(10):1-15.
Google Scholar
|
[12] |
Westerling A L. Warming and earlier spring increase western U.S.forest wildfire activity[J]. Science, 2006, 313(5789):940-943.
Google Scholar
|
[13] |
Ouzounov D, Freund F T. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data[J]. Advances in Space Research, 2004, 33(3):268-273.
Google Scholar
|
[14] |
任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 6:942-956.
Google Scholar
|
[15] |
Ren G Y, Guo J, Xu M Z, et al. Climate change of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 6:942-956.
Google Scholar
|
[16] |
Zhao B, Mao K, Cai Y, et al. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003—2017[J]. Earth System Science Data, 2020, 12:2555-2577.
Google Scholar
|
[17] |
Mao K, Ma Y, Tan X, et al. Global surface temperature change analysis based on MODIS data in recent twelve years[J]. Advance Space Research, 2017, 59:503-512.
Google Scholar
|
[18] |
Neteler M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010, 2(1):333-351.
Google Scholar
|
[19] |
Shen H, Li X, Cheng Q, et al. Missing information reconstruction of remote sensing data:A technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3):61-85.
Google Scholar
|
[20] |
Zhao L, Jin J, Wang S Y, et al. Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region[J]. Journal of Geophysical Research Atmospheres, 2012, 117(d9):1-12.
Google Scholar
|
[21] |
Mao K, Ma Y, Xia L, et al. Global aerosol change in the last decade:An analysis based on MODIS data[J]. Atmospheric Environment, 2014, 94:680-686.
Google Scholar
|
[22] |
Cao M, Mao K, Yan Y, et al. A new global gridded sea surface temperature data product based on multisource data[J]. Earth System Science Data, 2021, 13:2111-2134.
Google Scholar
|
[23] |
Kerr Y H, Lagouarde J P, Imbernon J. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm[J]. Remote Sensing of Environment, 1992, 41:197-209.
Google Scholar
|
[24] |
Mao K, Shi J, Li Z, et al. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data[J]. Journal of Geophysical Research-Atmosphere, 2007, 112(d21):1-17.
Google Scholar
|
[25] |
Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5:424-430.
Google Scholar
|
[26] |
Halliday W E D. Climate,soils and forests of Canada[J]. Forestry Chronicle, 1950, 26:287-301.
Google Scholar
|
[27] |
Mao K, Qin Z, Shi J, et al. A practical split-window algorithm for retrieving land surface temperature from MODIS data[J]. International Journal of Remote Sensing, 2005, 26:3181-3204.
Google Scholar
|
[28] |
Mao K, Shi J, Tang J, et al. A neural network technique for separating land surface emissivity and temperature from ASTER imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):200-208.
Google Scholar
|
[29] |
Xia L, Mao K, Ma Y, et al. An algorithm for retrieving land surface temperature using VIIRS data in combination with multi-sensors[J]. Sensors, 2014, 14:21385-21408.
Google Scholar
|
[30] |
Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4):892-905.
Google Scholar
|
[31] |
Wan Z, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4):980-996.
Google Scholar
|
[32] |
Fang S, Mao K, Xia X, et al. Dataset of daily near-surface air temperature in China from 1979 to 2018[J]. Earth System Science Data, 2022, 14:1413-1432.
Google Scholar
|
[33] |
Wang P, Mao K, Meng F, et al. A daily highest air temperature estimation method and spatial-temporal changes analysis of high temperature in China from 1979 to 2018[J]. Geoscientific Model Development, 2022, 15:6059-6083.
Google Scholar
|
[34] |
Hansen J, Lebedeff S. Global trends of measured surface air temperature[J]. Journal of Geophysical Research Atmospheres, 1987, 92(d11):13345-13372.
Google Scholar
|
[35] |
Julien Y, Sobrino J A, Verhoef W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999[J]. Remote Sensing of Environment, 2006, 103(1):43-55.
Google Scholar
|
[36] |
Wang H, Mao K, Yuan Z, et al. A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning[J]. Remote Sensing of Environment, 2021, 265:1-19.
Google Scholar
|
[37] |
Remer L A, Kleidman R G, Levy R C, et al. Global aerosol climatology from the MODIS satellite sensors[J]. Journal of Geophysical Research, 2008, 113(d14):1-18.
Google Scholar
|
[38] |
Platnick S. The MODIS cloud products:Algorithms and examples from Terra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):459-473.
Google Scholar
|
[39] |
Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21):5686-5699.
Google Scholar
|
[40] |
Mao K, Yuan Z, Zuo Z, et al. Changes in global cloud cover based on remote sensing data from 2003 to 2012[J], Chinese Geographical Science, 2019, 29(2):306-315.
Google Scholar
|
[41] |
Yan Y, Mao K, Shi J, et al. Driving forces of land surface temperature anomalous changes in North America in 2002—2018[J]. Scientific Reports, 2020, 6931(10):1-13.
Google Scholar
|
[42] |
Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and implications of recent climate change in Northern Alaska and other arctic regions[J]. Climatic Change, 2005, 72(3):251-298.
Google Scholar
|