[1] |
沃廷枢, 汪贻水, 肖垂斌, 等. 尾矿库手册[M]. 北京: 冶金工业出版社, 2013:1-13.
Google Scholar
|
[2] |
Wo T S, Wang Y S, Xiao C B, et al. Manual of tailings pond[M]. Beijing: Metallurgical Industry Press, 2013:1-13.
Google Scholar
|
[3] |
Rotta S, Henrique L, Alcantara E, et al. The 2019 Brumadinho tailings dam collapse:Possible cause and impacts of the worst human and environmental disaster in Brazil[J]. International Journal of Applied Earth Observation and Geoinformation, 2020,90:102119.
Google Scholar
|
[4] |
郝利娜, 张志, 何文熹, 等. 鄂东南尾矿库高分辨率遥感图像识别因子研究[J]. 国土资源遥感, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.
Google Scholar
|
[5] |
Hao L N, Zhang Z, He W X, et al. Tailings reservoir recognition factors of the high resolution remote sensing image in southeastern of Hubei[J]. Remote Sensing for Land and Resources, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.
Google Scholar
|
[6] |
Ma B D, Chen Y T, Zhang S, et al. Remote sensing extraction method of tailings ponds in ultra-low-grade iron mining area based on spectral characteristics and texture entropy[J]. Entropy, 2018,20(5):345.
Google Scholar
|
[7] |
Hao L N, Zhang Z, Yang X X. Mine tailing extraction indexes and model using remote-sensing images in southeast Hubei Province[J]. Environmental Earth Sciences, 2019,78(15):493.
Google Scholar
|
[8] |
曹兰杰, 吴兵, 汪金花, 等. 面向对象的高分一号铁尾矿遥感信息提取与分析[J]. 测绘与空间地理信息, 2019,42(4):98-101.
Google Scholar
|
[9] |
Cao L J, Wu B, Wang J H, et al. Object-oriented information extraction and analysis of the iron tailings with GF-1 remote sensing image[J]. Geomatics & Spatial Information Technology, 2019,42(4):98-101.
Google Scholar
|
[10] |
Fuentes M, Millard K, Laurin E. Big geospatial data analysis for Canada’s air pollutant emissions inventory (APEI):Using google earth engine to estimate particulate matter from exposed mine disturbance areas[J]. Giscience & Remote Sensing, 2019,57(2):245-257.
Google Scholar
|
[11] |
王立廷. 支持向量机结合面向对象提取尾矿库的应用研究[D]. 北京:中国地质大学(北京), 2018.
Google Scholar
|
[12] |
Wang L T. Research on application of support vector machine combined with object oriented method for tailing pond extraction[D]. Beijing:China University of Geosciences (Beijing), 2018.
Google Scholar
|
[13] |
Orimoloye I R, Ololade O O. Spatial evaluation of land-use dynamics in gold mining area using remote sensing and GIS technology[J]. International Journal of Environmental Science and Technology, 2020,17(11):4465-4480.
Google Scholar
|
[14] |
闫凯, 沈汀, 陈正超, 等. 基于深度学习的SSD模型尾矿库自动提取[J]. 中国科学院大学学报, 2020,37(3):360-367.
Google Scholar
|
[15] |
Yan K, Shen T, Chen Z C, et al. Automatic extraction of tailing pond based on SSD of deep learning[J]. Journal of University of Chinese Academy of Sciences, 2020,37(3):360-367.
Google Scholar
|
[16] |
Li Q T, Chen Z C, Zhang B, et al. Detection of tailings dams using high-resolution satellite imagery and a single shot multibox detector in the Jing-Jin-Ji region,China[J]. Remote Sensing, 2020,12(16).
Google Scholar
|
[17] |
王建伟, 刘红军, 郭科. 基于粗糙集理论的矿产资源地质调查综合评价模型及其应用——以滇东南地区为例[J]. 资源科学, 2014,36(8):1608-1617.
Google Scholar
|
[18] |
Wang J W, Liu H J, Guo K. Mineral resource geological survey evaluation model based on a rough set theory:A case study in southeastern Yunnan[J]. Resources Science, 2014,36(8):1608-1617.
Google Scholar
|
[19] |
潘含江. 我国典型金属矿山尾矿地球化学特征及资源环境评价[D]. 北京:中国地质大学(北京), 2019.
Google Scholar
|
[20] |
Pan H J. Geochemical characteristics and resource environment assessment of tailings from typical metal mines in China[D]. Beijing:China University of Geosciences(Beijing), 2019.
Google Scholar
|
[21] |
Yang A X, Zhong B, Hu L F, et al. Radiometric cross-calibration of the wide field view camera onboard GaoFen-6 in multispectral bands[J]. Remote Sensing, 2020,12(6):1037.
Google Scholar
|
[22] |
杨可明. 遥感原理与应用[M]. 北京: 中国矿业大学出版社, 2016:231-234.
Google Scholar
|
[23] |
Yang K M. Remote sensing principle and applications[M]. Beijing: China University of Mining and Technology Press, 2016:231-234.
Google Scholar
|
[24] |
Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]//Medical image Computing and Computer-Assisted Intervention, 2015:234-241.
Google Scholar
|
[25] |
Deepsense A. Deep learning for satellite imagery via image segmentation[EB/OL].(2017-4-12)[2021-01-12]. https://deepsense.io/deep-learning-for-satellite-imagery-via-image-segmentation/.
Google Scholar
|
[26] |
Zhu X L, Cheng Z Y, Wang S, et al. Coronary angiography image segmentation based on PSPNet[J]. Computer Methods and Programs in Biomedicine, 2020,200(4):105897.
Google Scholar
|
[27] |
Diaz V, Jairo J, Vlaminck M, et al. Solar panel detection within complex backgrounds using thermal images acquired by UAVs[J]. Sensors, 2020,20(21):6219.
Google Scholar
|
[28] |
Zhang L X, Shen J K, Zhu B J. A research on an improved Unet-based concrete crack detection algorithm[J]. Structural Health Monitoring-An International Journal, 2020: 1475921720940068. |