[1] |
Tian S Q, Wang L, Liu Y L, et al. Degradation of organic pollutants by ferrate/biochar:Enhanced formation of strong intermediate oxidative iron species[J]. Water Research, 2020,183,116054.
Google Scholar
|
[2] |
Thomas G, Léa C, Yann Q, et al. Historical CO2 emissions from land use and land cover change and their uncertainty[J]. Biogeoscuences, 2020,17(15):4075-4101.
Google Scholar
|
[3] |
Emily E, Oldfield S, et al. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth[J]. Ecological Applications, 2020,30(4):1-12.
Google Scholar
|
[4] |
Cheng Q, Jia W, Hu G X, et al. Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium[J]. Environmental Pollution, 2020,265,114827.
Google Scholar
|
[5] |
程朋根, 吴剑, 李大军, 等. 土壤有机质高光谱遥感和地统计定量预测[J]. 农业工程学报, 2009,25(3):142-147.
Google Scholar
|
[6] |
Cheng P G, Wu J, Li D J, et al. Quantitative prediction of soil organic matter content using hyper spectral remote senging and geo-statistics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(3):142-147.
Google Scholar
|
[7] |
Sparling G P, Wheeler D, Vesely E T, et al. What is soil organic matter worth?[J]. Journal of Environmental Quality, 2006,35(2):548-557.
Google Scholar
|
[8] |
夏楠, 丁建丽, 等. 基于多光谱数据的荒漠矿区土壤有机质估算模型[J]. 农业工程学报, 2016,32(6):263-267.
Google Scholar
|
[9] |
Xia N, Ding J L, et al. Estimation model of soil organic matter in desert mining area based on multispectral image data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(6):263-267.
Google Scholar
|
[10] |
Qiao X X, Wang C, Feng M C, et al. Hyperspectral estimation of soil organic matter based on different spectral preprocessing techniques[J]. Spectroscopy Letters, 2017,50(3):156-163.
Google Scholar
|
[11] |
刘明杰, 徐卓揆, 郜允兵, 等. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020,22(9):1799-1813.
Google Scholar
|
[12] |
Liu M J, Xu Z K, Gao Y B, et al. Estimating soil organic matter based on machine learning under sparse sample[J]. Journal of Geo-information Science, 2020,22(9):1799-1813.
Google Scholar
|
[13] |
Paula A, Luis E, Sáenz de M, et al. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands[J]. Science of the Total Environment, 2015, 506-507:380-390.
Google Scholar
|
[14] |
Ana M G, Leopoldo G. Land-use/cover change effects and carbon controls on volcanic soil profiles in highland temperate forests[J]. Geoderma, 2012(170):390-402.
Google Scholar
|
[15] |
贺军亮, 韩超山, 韦锐, 等. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
Google Scholar
|
[16] |
He J L, Han C S, Wei R, et al. Research on indirect hyperspectral estimating model of heavy metal Cd based on partial least squares regression[J]. Remote Sensing for Land and Resources, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
Google Scholar
|
[17] |
聂哲, 李秀芬, 吕家欣, 等. 东北典型黑土区表层土壤有机质含量高光谱反演研究[J]. 土壤通报, 2019,50(6):1285-1293.
Google Scholar
|
[18] |
Nie Z, Li X F, Lyu J X, et al. Hyperspectral retrieval of surface soil organic matter content in a typical black soil region of northeast china[J]. Chinese Jourmal of Soil Science, 2019,50(6):1285-1293.
Google Scholar
|
[19] |
Lin C, Zhu A X, Wang Z F, et al. The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3[J]. International Journal of Applied Earth Observations and Geoinformation, 2020,89, 1102094.
Google Scholar
|
[20] |
Galvao L S, Vitorello I. Variability of laboratory measured soil lines of soils from southheastern Brazil[J]. Remote Sensing of Environment, 1998(63):166-181.
Google Scholar
|
[21] |
亚森江·喀哈尔, 杨胜天, 尼格拉·塔什甫拉提, 等. 基于分数阶微分优化光谱指数的土壤电导率高光谱估算[J]. 生态学报, 2019,39(19):7237-7248.
Google Scholar
|
[22] |
Yasenjiang K, Yang S T, Nigara T, et al. Hyperspectral estimation of soil electrical conductivity based on fractional order differentially optimised spectral indices[J]. Acta Ecologica Sinica, 2019,39(19):7237-7248.
Google Scholar
|
[23] |
徐彬彬, 段昌达. 南二坡光谱反射率特性与有机质含量的相关性[J]. 科学通报, 1980(6):282-284.
Google Scholar
|
[24] |
Xu B B, Duan C D. Correlation between spectral reflectance and organic matter content of the Nanerpo[J]. Science Bulletin, 1980(6):282-284.
Google Scholar
|
[25] |
叶勤, 姜雪芹, 李西灿, 等. 基于高光谱数据的土壤有机质含量反演模型比较[J]. 农业机械学报, 2017,48(3):164-172.
Google Scholar
|
[26] |
Ye Q, Jiang X Q, Li X C, et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(3):164-172.
Google Scholar
|
[27] |
Zhu M K, Kong F L, Li Y, et al. Effects of moisture and salinity on soil dissolved organic matter and ecological risk of coastal wetland[J]. Environmental Research, 2020,187,109659.
Google Scholar
|
[28] |
Hong Y S, Chen S C, Zhang Y, et al. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy:Effects of two-dimensional correlation coefficient and extreme learning machine[J]. Science of the Total Environment, 2018,644:1232-1243.
Google Scholar
|
[29] |
Al-Abbas A H, Swain P H, Baumgarder M F, et al. Relating organic matter and clay content to the multi-spectral radiance of soils[J]. Soil Science, 1972,114(6):477-485.
Google Scholar
|
[30] |
国佳欣, 朱青, 赵小敏, 等. 不同土地利用类型下土壤有机碳含量的高光谱反演[J]. 应用生态学报, 2020,31(3):863-871.
Google Scholar
|
[31] |
Guo J X, Zhu Q, Zhao X M, et al. Hyper-spectral inversion of soil organic carbon content under different land use typrs[J]. Chinese Journal of Applied Ecology, 2020,31(3):863-871.
Google Scholar
|
[32] |
毛丽, 苏志珠, 王国玲, 等. 毛乌素沙地不同土地利用类型的土壤粒度及有机质特征[J]. 干旱区研究, 2019,36(3):589-598.
Google Scholar
|
[33] |
Mao L, Su Z Z, Wang G L, et al. Soil particle size and organic matter content of different land use types in the Mu Us sandland[J]. Arid Zone Research, 2019,36(3):589-598.
Google Scholar
|
[34] |
Lin L X, Gao L P, Xue F C, et al. Hyperspectral analysis of total nitrogen in soil using a synchronized decoloring fuzzy measured value method[J]. Soil & Tillage Research, 2020,202:104658.
Google Scholar
|
[35] |
亚森江·喀哈尔, 茹克亚·萨吾提, 尼加提·卡斯木, 等. 优化光谱指数的露天煤矿区土壤重金属含量估算[J]. 光谱学与光谱分析, 2019,39(8):2486-2494.
Google Scholar
|
[36] |
Yasenjiang K, Rukeya S, Nijat K, et al. Estimation of heavy metal contents in soil around open pit coal mine area based on optimized spectral index[J]. Spectroscopy and Spectral Analysis, 2019,39(8):2486-2494.
Google Scholar
|
[37] |
Tatiana F R, Luiza C, et al. Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type[J]. Pedosphere, 2020,30(3):336-345.
Google Scholar
|
[38] |
侯增福, 刘镕源, 闫柏琨, 等. 基于波段选择与学习字典的高光谱图像异常探测[J]. 国土资源遥感, 2019,31(1):33-41.doi: 10.6046/gtzyyg.2019.01.05.
Google Scholar
|
[39] |
Hou Z F, Liu R Y, Yan B K, et al. Hyperspectral imagery anomaly detection based on band selection and learning dictionary[J]. Remote Sensing for Land and Resources, 2019,31(1):33-41.doi: 10.6046/gtzyyg.2019.01.05.
Google Scholar
|
[40] |
Patel S S, Ramachandran P. A comparison of machine learning techniques for modeling river flow time series:The case of upper Cauvery River Basin[J]. Water Resources Management, 2015,29(2):589-602.
Google Scholar
|
[41] |
郑昭佩, 刘新作. 土壤质量及其评价[J]. 应用生态学报, 2003,14(1):131-134.
Google Scholar
|
[42] |
Zheng Z P, Liu X Z, et al. Soil quality and its evaluation[J]. Chinese Journal of Applied Ecology, 2003,14(1):131-134.
Google Scholar
|
[43] |
Moura-Bueno J M, Dalmolin R S D, Caten A T, et al. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions[J]. Geoderma, 2019,337:565-581.
Google Scholar
|
[44] |
Gomez C, Adeline K, Bacha S, et al. Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data,from multispectral to hyperspectral scenarios[J]. Remote Sensing of Environment, 2018,204:18-30.
Google Scholar
|
[45] |
张敏, 刘爽, 刘勇, 等. 黄土丘陵缓坡风沙区不同土地利用类型土壤水分变化特征[J]. 水土保持学报, 2019,33(3):115-120,128.
Google Scholar
|
[46] |
Zhang M, Liu S, Liu Y, et al. Soil moisture variation characteristics of different land use types in the moderate slope sandy area of loess hilly region[J]. Journal of Soil and Water Conservation, 2019,33(3):115-120,128.
Google Scholar
|
[47] |
Wang D, He N P, Wang Q, et al. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains,Northeast China[J]. Pedosphere, 2016,26(3):399-407.
Google Scholar
|
[48] |
Peng F, Katherine M H, Guan K Y, et al. Estimating photosynthetic traits from reflectance spectra:Asynjournal of spectral indices,numerical inversion,and partialleast square regression[J]. Plant,Cell & Environment, 2020,43(5):1103-1330.
Google Scholar
|
[49] |
吴志远, 彭苏萍, 杜文凤, 等. 干旱地区煤层开采对地表土壤理化性质的影响[J]. 水土保持研究, 2019,26(5):75-80.
Google Scholar
|
[50] |
Wu Z Y, Peng S P, Du W F, et al. Effect of coal mining on surface soil physicochemical of sandy land in the arid region[J]. Journal of Soil and Water Conservation, 2019,26(5):75-80.
Google Scholar
|
[51] |
Kaczmarek‐Derda W, Helgheim M, Netland J, et al. Impacts of soil moisture level and organic matter content on growth of two Juncus species and Poa pratensis grown under acid soil conditions[J]. Weed Research, 2019,59(6):490-500.
Google Scholar
|
[52] |
毕银丽, 胡晶晶, 刘京. 煤矿微生物复垦区灌木林下土壤养分的空间异质性[J]. 煤炭学报, 2020,45(8):2908-2917.
Google Scholar
|
[53] |
Bi Y L, Hu J J, Liu J. Spatial heterogeneity of soil nutrients under shrubbery in micro-reclamation demonstration base in coal mine areas of China[J]. Journal of China Coal Society, 2020,45(8):2908-2917.
Google Scholar
|
[54] |
刘军, 张成福, 孙冬杰, 等. 草原区煤矿开采对周边旱作农田土壤养分和重金属的影响[J]. 生态与农村环境学报, 2019,35(7):909-916.
Google Scholar
|
[55] |
Liu J, Zhang C F, Sun D J, et al. The impact of coal mining on soil nutrients and heavy metals in rainfed farmland in arid grassland area[J]. Journal of Ecology and Rural Environment, 2019,35(7):909-916.
Google Scholar
|
[56] |
Yang F, Huang J P, Zhou C L, et al. Taklimakan desert carbon-sink decreases under climate change[J]. Science Bulletin, 2020,65(6):431-433. |