[1] |
刘辉. 基于高分辨率遥感影像的城中村提取方法研究[D]. 武汉:武汉大学, 2018.
Google Scholar
|
[2] |
Liu H. Study on extraction method of urban villages based on high-resolution remote sensing image[D]. Wuhan:Wuhan University, 2018.
Google Scholar
|
[3] |
Boutell M R, Luo J, Brown C M. Scene parsing using region-based generative models[J]. IEEE Transactions on Multimedia, 2007, 9(1):136-146.
Google Scholar
|
[4] |
尚春艳. 基于高分辨率影像的城中村土地利用变化检测[D]. 西安:长安大学, 2017.
Google Scholar
|
[5] |
Shang C Y. Detection of land use change in urban villages based on high resolution images:A case study of Chang’an District,Xi’an City[D]. Xi’an:Chang’an University, 2017.
Google Scholar
|
[6] |
Li Y, Huang X, Liu H. Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images[J]. Photogrammetric Engineering & Remote Sensing Journal of the American Society of Photogrammetry, 2017, 8(13):567-579.
Google Scholar
|
[7] |
Chen Y B, Chang K T, Han F Z, et al. Investigating urbanization and its spatial determinants in the central districts of Guangzhou,China[J]. Habitat International, 2016, 51:59-69.
Google Scholar
|
[8] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
Google Scholar
|
[9] |
Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016.
Google Scholar
|
[10] |
崔珂玮, 张亚豪, 刘彤, 等. 基于ENVI深度学习模型的卫星影像识别方法研究[J]. 现代信息科技, 2020, 4(1):57-59.
Google Scholar
|
[11] |
Cui K W, Zhang Y H, Liu T, et al. Research on satellite image recognition method based on ENVI deep learning model[J]. Modern Information Technology, 2020, 4(1):57-59.
Google Scholar
|
[12] |
黄亮, 左小清, 冯冲, 等. 基于Canny算法的面向对象影像分割[J]. 国土资源遥感, 2011, 23(4):26-30.doi: 10.6046/gtzyyg.2011.04.05.
Google Scholar
|
[13] |
Huang L, Zuo X Q, Feng C, et al. Object-oriented image segmentation based on Canny algorithm[J]. Remote Sensing for Land and Resources, 2011, 23(4):26-30.doi: 10.6046/gtzyyg.2011.04.05.
Google Scholar
|
[14] |
高扬. 基于卷积神经网络的高分辨率遥感影像建筑物提取[D]. 南京:南京大学, 2018.
Google Scholar
|
[15] |
Gao Y. Building extraction of high-resolution remote sensing image based on convolutional neural network[D]. Nanjing:Nanjing University, 2018.
Google Scholar
|
[16] |
Cui C H, Han Z G. Spatial patterns of retail stores using POIs data in Zhengzhou,China[C]// 2015 2nd IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services(ICSDM).IEEE, 2015:88-92.
Google Scholar
|
[17] |
Liu J, Deng Y, Wang Y, et al. Urban nighttime leisure space mapping with nighttime light images and POI data[J]. Remote Sensing, 2020, 12(3):541.
Google Scholar
|
[18] |
禹文豪, 艾廷华. 核密度估计法支持下的网络空间POI点可视化与分析[J]. 测绘学报, 2015(1):82-90.
Google Scholar
|
[19] |
Yu W H, Ai T H. The visualization and analysis of POI features under network space supported by kernel density estimation[J]. Journal of Surveying and Mapping, 2015(1):82-90.
Google Scholar
|
[20] |
Maulik U, Chakraborty D. Remote sensing image classification:A survey of support-vector-machine-based advanced techniques[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):33-52.
Google Scholar
|
[21] |
Patra S, Bruzzone L. A novel SOM-SVM-based active learning technique for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):6899-6910.
Google Scholar
|
[22] |
陈昂, 杨秀春, 徐斌, 等. 基于面向对象与深度学习的榆树疏林识别方法研究[J]. 地球信息科学学报, 2020, 22(9):1897-1909.
Google Scholar
|
[23] |
Chen A, Yang X C, Xu B, et al. Study on drought and flood evolution in Guangxi based on TRMM data and SPI drought index[J]. Journal of Geo-Information Science, 2020, 22(9):1897-1909.
Google Scholar
|
[24] |
陈良浩, 朱彩英, 郭连惠, 等. 基于DSM点云纠正的正射影像房屋边缘锯齿消除[J]. 测绘科学技术学报, 2017, 34(3):279-282.
Google Scholar
|
[25] |
Chen L H, Zhu C Y, Guo L H, et al. Removing aliasing effects of house edge in DOM based on the correction of DSM[J]. Journal of Geomatics Science and Technology, 2017, 34(3):279-282.
Google Scholar
|
[26] |
刘文雅, 岳安志, 季珏, 等. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2):120-129.doi: 10.6046/gtzyyg.2020.02.16.
Google Scholar
|
[27] |
Liu W Y, Yue A Z, Ji J, et al. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+semantic segmentation model[J]. Remote Sensing for Land and Resources, 2020, 32(2):120-129.doi: 10.6046/gtzyyg.2020.02.16.
Google Scholar
|
[28] |
罗仙仙, 曾蔚, 陈小瑜, 等. 深度学习方法用于遥感图像处理的研究进展[J]. 泉州师范学院学报, 2017, 35(6):35-41.
Google Scholar
|
[29] |
Luo X X, Zeng W, Chen X Y, et al. Research progress of deep learning method used to remote sensing image processing[J]. Journal of Quanzhou Normal University, 2017, 35(6):35-41.
Google Scholar
|
[30] |
Tastan E, Sozen T. Oblique split technique in septal reconstruction[J]. Facial Plastic Surgery, 2013, 29(6):487-491.
Google Scholar
|
[31] |
Abdiansah A, Wardoyo R. Time complexity analysis of support vector machines(SVM) in LIBSVM[J]. International Journal Computer and Application, 2015, 128(3):28-34.
Google Scholar
|
[32] |
刘伟. 基于无人机多光谱遥感影像的地物分类方法研究[D]. 石河子:石河子大学, 2017.
Google Scholar
|
[33] |
Liu W. Study of object classification based on multispectral images of UAV[D]. Shihezi:Shihezi University, 2017.
Google Scholar
|
[34] |
胡蕾, 侯鹏洋. 一种基于光谱与纹理特征的多光谱遥感图像地物分类方法[J]. 中国科技论文, 2015, 10(2):197-200.
Google Scholar
|
[35] |
Hu L, Hou P Y. A multi-spectral remote sensing image feature classification method based on spectrum and texture features[J]. Chinese Science and Technology Paper, 2015, 10(2):197-200. |