China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 33, No. 3
Article Contents

DENG Xiaojin, JING Changqing, GUO Wenzhang, Yan Yujiang, CHEN Chen. 2021. Surface albedos of different land use types in the Junggar Basin. Remote Sensing for Natural Resources, 33(3): 173-183. doi: 10.6046/zrzyyg.2020339
Citation: DENG Xiaojin, JING Changqing, GUO Wenzhang, Yan Yujiang, CHEN Chen. 2021. Surface albedos of different land use types in the Junggar Basin. Remote Sensing for Natural Resources, 33(3): 173-183. doi: 10.6046/zrzyyg.2020339

Surface albedos of different land use types in the Junggar Basin

  • This study focuses on the surface albedo characteristics of different land use types in the Junggar Basin, aiming to provide a scientific basis for the revealment of the biogeophysical mechanisms of different land use types on a regional scale. Based on the surface albedo data during 2000-2018 obtained through remote sensing inversion and the land use data of 2000, 2010, and 2018, this study analyzed the temporal and spatial variation characteristics and interannual variation trend of the surface albedos for short wave (0.3~2.5 μm), near infrared (0.76~3.0 μm) and visible light (0.35~0.76 μm) of different land use types in the Junggar Basin. It will provide a scientific basis for the understanding of the albedo characteristics of different land use types and reveal the impacts of cover change on climate change on a regional scale. The results are as follows. The surface albedos of different land use types have distinctly different characteristics for different wavebands. The surface albedos of the first- and second-level land use types are in the order of near infrared > short wave > visible light, except for the second-level land use types of lakes and reservoirs. For the interannual change trend, the surface albedos of different land use types for the three bands during 2010—2018 are slightly higher than that during 2000—2010. Moreover, all the first-level land use types in the short waveband during 2010—2018 passed the significance test of p=0.05. The interannual variations of surface albedos of land use types in the Junggar Basin over the past 18 years showed a weak growth trend in terms of the variation rate and were slight and stable on the whole in terms of the rate variation. The results of this study will lay a foundation for the research into the surface spectral radiation and energy balance of the study area.
  • 加载中
  • [1] Lawler J J, Lewis J D, Nelson E, et al. Projected land-use change impacts on ecosystem services in the United States[J]. Proceedings of the National Academy of Sciences, 2014, 111(20):7492-7497.

    Google Scholar

    [2] 刘纪远, 宁佳, 匡文慧. 2010—2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5):789-802.

    Google Scholar

    [3] Liu J Y, Ning J, Kuang W H. Temporal and spatial patterns and new features of land use change in China from 2010 to 2015[J]. Journal of Geographical Sciences, 2018, 73(5):789-802.

    Google Scholar

    [4] Betts R A, Falloon P, Goldewijk K K, et al. Biogeophysical effects of land use on climate:Model simulations of radiative forcing and largescale temperature change[J]. Agricul-tural and Forest Meteorology, 2007, 142(2-4):216-233.

    Google Scholar

    [5] Prestele R, Arneth A, Bondeau A, et al. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assess-ments[J]. Earth System Dynamics, 2017, 8(2):1-28.

    Google Scholar

    [6] 翟俊, 刘荣高, 刘纪远, 等. 1990—2010年中国土地覆被变化引起反照率改变的辐射强迫[J]. 地理学报, 2013, 68(7):875-885.

    Google Scholar

    [7] Zhai J, Liu R G, Liu J Y, et al. Radiative forcing over China due to albedo change caused by land cover change during 1990—2010[J]. Acta Geographica Sinica, 2013, 68(7):875-885.

    Google Scholar

    [8] Steffen W, Rockström J, Richardson K, et al. Trajectories of the Earth system in the anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115(33):8252-8259.

    Google Scholar

    [9] Betts R A. Biogeophysical impacts of land use on present-day climate:Near-surface temperature change and radiative forcing[J]. Atmospheric Science Letters, 2000, 2(1-4):39-51.

    Google Scholar

    [10] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response[J]. Journal of Geophysical Research, 1997, 102(1997):6831-6864.

    Google Scholar

    [11] Brovkin V, Raddatz T, Reick C H, et al. Global biogeophysical interactions between forest and climate[J]. Geophysical Research Letters, 2009, 36(7):251-254.

    Google Scholar

    [12] Barnes C A, Roy D P. Radiative forcing over the conterminous united states due to contemporary land cover land use albedo change[J]. Geophysical Research Letters, 2008, 35(9):1-6.

    Google Scholar

    [13] Myhre G, Myhre A. Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes[J]. Journal of Climate, 2003, 16(10):1511-1524.

    Google Scholar

    [14] Myhre G, Kvalevag M M, Schaaf C B. Radiative forcing due to anthropogenic vegetation change based on modis surface albedo data[J]. Geophysical Research Letters, 2005, 32(21):1-4.

    Google Scholar

    [15] Davin E L, Noblet-Ducoudré N, Friedlingstein P. Impact of land cover change on surface climate:Relevance of the radiative forcing concept[J]. Geophysical Research Letters, 2007, 34(13):1-5.

    Google Scholar

    [16] 李振朝, 韦志刚, 文军, 等. 黄土高原典型塬区冬小麦地表辐射平衡各分量特征分析[J]. 太阳能学报, 2009, 30(1):12-18.

    Google Scholar

    [17] Li Z C, Wei Z G, Wen J, et al. Analysis of land-surface radiation characteristic in winter-wheat field over the loess plateau mesa in China[J]. Acta Energiae Solaris Sinica, 2009, 30(1):12-18.

    Google Scholar

    [18] 郑志远, 韦志刚, 李振朝, 等. 敦煌荒漠戈壁地区裸土地表反照率参数化研究[J]. 大气科学, 2014, 38(2):297-308.

    Google Scholar

    [19] Zheng Z Y, Wei Z G, Li Z C, et al. Study of parameterization of surface albedo of bare soilover the Gobi desert in the Dunhuang region[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2):297-308.

    Google Scholar

    [20] 杨佳希, 李振朝, 韦志刚, 等. 稀疏植被地表分光辐射及其反照率特征研究[J]. 太阳能学报, 2017, 38(3):852-859.

    Google Scholar

    [21] Yang J X, Li Z C, Wei Z G, et al. Characteristics of solar spectral radiation and corresponding albedo in sparse vegetation region[J]. Acta Energiac Solaris Sinica, 2017, 38(3):852-859.

    Google Scholar

    [22] 邹基玲, 季国良. 藏北高原太阳总辐射和地表反射率的分光辐射[J]. 太阳能学报, 1996, 17(12):113-117.

    Google Scholar

    [23] Zou J L, Ji G L. The spectral characteristics of global radiation and surface albedo on Northern Tibetan plateau[J]. Acta Energiae Solaris Sinica, 1996, 17(12):113-117.

    Google Scholar

    [24] Zheng Z Y, Dong W J, Li Z C, et al. Observational study of surface spectral radiation and corresponding albedo over Gobi,desert,and bare loess surfaces in northwestern China[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(3):883-896.

    Google Scholar

    [25] 郑志远, 韦志刚, 李振朝, 等. 敦煌戈壁秋初太阳分光辐射及其反照率特征[J]. 太阳能学报, 2012, 33(11):1938-1942.

    Google Scholar

    [26] Zheng Z Y, Wei Z G, Li Z C, et al. Characteristics of solar spectral radiation and albedo during early autumn in Dunhuangn Gobl[J]. Acta Energlae Solaris Sinica, 2012, 33(11):1938-1942.

    Google Scholar

    [27] 刘亲亲, 崔耀平, 刘素洁, 等. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1):46-56.

    Google Scholar

    [28] Liu Q Q, Cui Y P, Liu S J, et al. Study on surface albedo of spectral radiation of different land use types in China[J]. Remote Sensing Technology and Application, 2019, 34(1):46-56.

    Google Scholar

    [29] 许鹏, 新疆草地资源及其应用[M]. 乌鲁木齐: 新疆科技卫生出版社, 1993: 205.

    Google Scholar

    [30] Xu P. Grassland resources and its application in Xinjiang[M]. Urumqi: Xinjiang Science and Technology Health Press, 1993: 205.

    Google Scholar

    [31] Vermote E F, Kotchenova S Y. MOD09(surface reflectance) user’s guide[EB/OL].(2008-3)[2012-7]. http://modis-sr.ltdri.org.

    Google Scholar

    [32] Wang K, Liu J, Zhou X, et al. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau[J]. Journal of Geophysical Research, 2004, 109(D5):1-9.

    Google Scholar

    [33] Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(2):977-997.

    Google Scholar

    [34] Liang S L. Validating MODIS land surface reflectance and albedo products:Methods and preliminary results[J]. Remote Sensing of Environment, 2002, 83(1-2):149-162.

    Google Scholar

    [35] 王开存, 刘晶淼, 周秀骥, 等. 利用MODIS卫星资料反演中国地区睛空地表短波反照率及其特征分析[J]. 大气科学, 2004, 28(6):941-952.

    Google Scholar

    [36] Wang K C, Liu J M, Zhou X J, et al. Retrieval of the surface albedo under clear sky over China and its characteristics analysis by using MODIS satellite date[J]. Chinese Journal of Atomospheric Sciences, 2004, 28(6):941-952.

    Google Scholar

    [37] 陈爱军, 卞林根, 刘玉洁, 等. 应用MODIS数据反演青藏高原地区地表反照率[J]. 南京气象学院学报, 2009, 32(2):222-229.

    Google Scholar

    [38] Chen A J, Bian L G, Liu Y J, et al. Using MODIS date to retrieve albedo over the Qinghai-Tibet plateau[J]. Tournal of Nanjing Insitute of Meteorology, 2009, 32(2):222-229.

    Google Scholar

    [39] Liang S, Shuey, C J, Rass A L, et al. Narrowband to broadband conversions of land surface albedo:II[J]. Validation,Remote Sensing of Environment, 2003, 84(1),25-41.

    Google Scholar

    [40] Lewis P, Barnsley M J. Influence of the sky radiance distribution on various formulations of the earth surface albedo[C]// Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing.France:ISPRS, 1994,707-715.

    Google Scholar

    [41] 徐新良, 庞治国, 于信芳, 等. 土地利用/覆被变化时空信息分析方法及应用[M]. 北京: 科学技术文献出版社, 2014:90-108.

    Google Scholar

    [42] Xu X L, Pang Z G, Yu X F, et al. Spatial-temporal pattern analysis of land use/cover[M]. Beijing: Scientific and Technical Documentation Press, 2014:90-108.

    Google Scholar

    [43] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999,43-47.

    Google Scholar

    [44] Wei F Y. Modern climate statistical diagnosis and prediction technology[M]. Beijing: Meteorological Press, 1999,43-47.

    Google Scholar

    [45] 郑瑜晗, 黄麟, 翟俊. 陆地表层覆盖变化对地表反照率影响的四国对比[J]. 遥感学报2020, 24(7):917-932.

    Google Scholar

    [46] Zheng Y H, Huang L, Zhai J. Impacts of land cover changes on surface albedo in China,the United States,India and Brazil[J]. Journal of Remote Sensing, 2020, 24(7):917-932.

    Google Scholar

    [47] Cao M, Prince S D, Tao B, et al. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and Atomospheric CO2[J]. Telus, 2010, 57(3):2010-217.

    Google Scholar

    [48] 唐希颖, 崔耀平, 李楠, 等. 2000—2015年北京市土地利用强度及其辐射反馈评估[J]. 遥感技术与应用, 2020, 35(3):587-595.

    Google Scholar

    [49] Tang X Y, Cui Y P, Li N, et al. Land use intensity and radiation feedback in Beijing from 2000 to 2015[J]. Remote Sensing Technology and Application, 2020, 35(3):587-595.

    Google Scholar

    [50] 樊杰. 中国主体功能区划方案[J]. 地理学报, 2015, 70(2):186-201.

    Google Scholar

    [51] Fan J. Draft of major function oriented zoning of China[J]. Acta Geographica Sinica, 2015, 70(2):186-201.

    Google Scholar

    [52] 左洪超, 吕世华, 胡隐樵. 中国近50年气温及降水量的变化趋势分析[J]. 高原气象, 2004, 23(2):238-244.

    Google Scholar

    [53] Zuo H C, Lyu S H, Hu Y Q. Variations trend of yearly mean air temperature and precipitation in China in the last 50 years[J]. Plateau Meteorology, 2004, 23(2):238-244.

    Google Scholar

    [54] 杨续超, 张镱锂, 刘林山, 等. 中国地表气温变化对土地利用/覆被类型的敏感性[J]. 中国科学(D辑:地球科学), 2009, 39(5):638-646.

    Google Scholar

    [55] Yang X C, Zhang Y L, Liu L S, et al. Sensitivity of surface air temperature change to land types in China[J]. Science in China Series D:Earth Sciences, 2009, 39(5):638-646.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(664) PDF downloads(95) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint