China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2021 Vol. 33, No. 3
Article Contents

WEI Geng, HOU Yuqiao, ZHA Yong. 2021. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic. Remote Sensing for Natural Resources, 33(3): 238-245. doi: 10.6046/zrzyyg.2020266
Citation: WEI Geng, HOU Yuqiao, ZHA Yong. 2021. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic. Remote Sensing for Natural Resources, 33(3): 238-245. doi: 10.6046/zrzyyg.2020266

Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic

  • This study aims to compare and analyze the effects of social control and industrial shutdown induced by the COVID-19 epidemic on the particulate matter and aerosol types in Wuhan City, Hubei Province. To this end, the aerosol optical depth (AOD) and fine mode fraction (FMF) data of Wuhan City from December 1, 2019 to April 30, 2020 were obtained based on the data of atmospheric particulate matter (PM10 and PM2.5) and the data from MODIS aerosol products. Then the models of four types of aerosols (urban/industrial, sand-dust, clean marine, and mixed types) were established, obtaining the following results. During the period of social control and industrial shutdown, the concentration of atmospheric particulate matter showed a downward trend owing to the reduction in anthropogenic emissions. Meanwhile, the proportion of urban/industrial aerosols also showed a downward trend, while the proportion of dry and clean marine aerosols increased to 13.4% in the period except for the Spring Festival holiday. In contrast, the atmospheric particulate matter and the aerosols of the above types showed opposite trends after the ordered resumption of work and production. Compared with the same period during 2017—2019, the concentration of atmospheric particulate matter and aerosol parameters were also lower during the continuous control and shutdown after the Spring Festival. It can be inferred that MODIS aerosol products can be used to effectively obtain the characteristics of regional aerosols and thus provide data for the monitoring and governance of the regional atmospheric environment.
  • 加载中
  • [1] 毛节泰, 张军华, 王美华. 中国大气气溶胶研究综述[J]. 气象学报, 2002, 60(5):625-634.

    Google Scholar

    [2] Mao J T, Zhang J H, Wang M H. Summary comment on research of atmospheric aerosl in China[J]. Acta Meteorologica Sinica, 2002, 60(5):625-634.

    Google Scholar

    [3] 张小曳. 中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J]. 气象学报, 2014, 72(6):1108-1117.

    Google Scholar

    [4] Zhang X Y. Characteristics of the chemical components of aerosol particles in the various regions over China[J]. Acta Meteorologica Sinica, 2014, 72(6):1108-1117.

    Google Scholar

    [5] 徐祥德. 城市化环境大气污染模型动力学问题[J]. 应用气象学报, 2002(13):1-12.

    Google Scholar

    [6] Xu X D. Dynamic issues of urban atmospheric pollution models[J]. Quarterly Journal of Applied Meteorlolgy, 2002(13):1-12.

    Google Scholar

    [7] 徐祥德, 施晓晖, 张胜军, 等. 北京及周边城市群落气溶胶影响域及其相关气候效应[J]. 科学通报, 2005, 50(22):2522-2530.

    Google Scholar

    [8] Xu X D, Shi X H, Zhang S J, et al. The aerosol influence regions and related climate effects of Beijing and surrounding cities[J]. Chinese Science Bulletin, 2005, 50(22):2522-2530.

    Google Scholar

    [9] Raghu B, Sailesh N B, Rajasekhar B B. Southeast Asian smoke haze:Fractionation of particulate-bound elements and associated health risk[J]. Environmental Science & Technology, 2014, 48(8):4327-4335.

    Google Scholar

    [10] Peng R D, Bell M L, Geyh A S. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution[J]. Environmental Health Perspectives, 2009, 117(6):957-963.

    Google Scholar

    [11] Kloog I, Ridgway B, Koutrakis P, et al. Long and short term exposure to PM2.5 and mortality[J]. Epidemiology, 2013(24):555-561.

    Google Scholar

    [12] Che H, Xia X, Zhu J, et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements[J]. Atmospheric Chemistry and Physics, 2014, 14(4):2125-2138.

    Google Scholar

    [13] Qi B, Hu D Y, Che H Z, et al. Seasonal variation of aerosol optical properties in an urban site of the Yangtze Delta Region of China[J]. Aerosol and Air Quality Research, 2016, 16(11):2884-2896.

    Google Scholar

    [14] 郑彬, 吴兑, 李菲, 等. 南海夏季风背景下的广州气溶胶光学特性变化特征[J]. 热带气象学报, 2013, 29(2):207-214.

    Google Scholar

    [15] Zheng B, Wu D, Li F, et al. Variation of aerosol optical characteristics in Guangzhou on a backgroud of South China Sea summer monsoon[J]. Journal of Tropical Meteorology, 2013, 29(2):207-214.

    Google Scholar

    [16] King M D, Kaufman Y J, Menzel W P, et al. Remote sensing of cloud,aerosol,and water vapor properties from the moderate resolution imaging spectrometer(MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30:2-27.

    Google Scholar

    [17] Kang N, Kumar K R, Hu K, et al. Long-term (2002—2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta[J]. Atmospheric Research, 2016, 181:29-43.

    Google Scholar

    [18] 郑有飞, 董自鹏, 吴荣军, 等. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2):224-234.

    Google Scholar

    [19] Zheng Y F, Dong Z P, Wu R J, et al. Validation of MODIS aerosol optical thickness retrieval over Yangtze delta region of China[J]. Advances in Earth Science, 2011, 26(2):224-234.

    Google Scholar

    [20] 朱爱华, 李成才. 北京地区MODIS卫星遥感气溶胶资料的检验与应用[J]. 环境科学学报, 2004, 24(1):86-90.

    Google Scholar

    [21] Zhu A H, Li C C. Validation and application of MODIS remote aerosol information in Beijing[J]. Acta Scientiae Circumstantiae, 2004, 24(1):86-90.

    Google Scholar

    [22] Lee K H, Kim Y J, Wolfgand V, et al. Sptio-teproral variability of satellite derived aerosol optical thickness over Northeast Asia in 2004[J]. Atmospheric Environment, 2007, 41:3959-3973.

    Google Scholar

    [23] Lee K H, Kim Y J, Kim M J. Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004[J]. Atmospheric Environment, 2006, 40:5146-5155.

    Google Scholar

    [24] 贺军亮, 张淑媛, 李佳, 等. 基于MODIS的城市大气颗粒物污染指数研究[J]. 国土资源遥感, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.

    Google Scholar

    [25] He J L, Zhang S Y, Li J, et al. Particulate matter indices derived from MODIS data for indicating urban air pollution[J]. Remote Sensing for Land and Resources, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.

    Google Scholar

    [26] 张瑞芳, 于兴娜. 河南省气溶胶光学特性的时空变化特征[J]. 环境科学, 2020, 41(2):600-608.

    Google Scholar

    [27] Zhang R F, Yu X N. Spatio-temporal distribution and variation characteristics of aerosol optical properties in Henan Province[J]. Environmental Science, 2020, 41(2):600-608.

    Google Scholar

    [28] 施益强, 邓秋琴, 吴君, 等. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 31(1):106-113.doi: 10.6046/gtzyyg.2020.01.15.

    Google Scholar

    [29] Shi Y Q, Deng Q Q, Wu J, et al. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land and Resources, 2020, 31(1):106-113.doi: 10.6046/gtzyyg.2020.01.15.

    Google Scholar

    [30] 邬明权, 牛铮, 乔玉良, 等. 基于MODIS数据的北京气溶胶类型特性与影响因素分析[J]. 地球信息科学学报, 2009, 11(4):541-547.

    Google Scholar

    [31] Wu M Q, Niu Z, Qiao Y L, et al. Aerosol types and its affecting factors over Beijing based on MODIS data[J]. Journal of Geo-Information Science, 2009, 11(4):541-547.

    Google Scholar

    [32] 安晓丹, 张佳华, 刘学锋, 等. 华北平原夏收期间气溶胶卫星遥感探测分析[J]. 环境科学学报, 2016, 36(9):3386-3392.

    Google Scholar

    [33] An X D, Zhang J H, Liu X F, et al. Aerosol detection analysis from satellite during the harvest season over North China Plain[J]. Acta Scientiae Circumstantiae, 2016, 36(9):3386-3392.

    Google Scholar

    [34] Anderson T L, Wu Y, Chu D A, et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D18):D18204.

    Google Scholar

    [35] Li L Y, Chen Y, Xie S D. Spatio-temporal variation of biogenic volatile organic compounds emissions in China[J]. Environmental Pollution, 2013, 182(6):157-168.

    Google Scholar

    [36] Barnaba F, Gobbi G P. Aerosol seasonal variability over the Mediterranean region and relative impact of maritime,continental and Saharan dust particles over the basin from MODIS data in the year 2001[J]. Atmospheric Chemistry and Physics, 2004, 4:2367-2391.

    Google Scholar

    [37] 郑祚芳, 陈家华, 祁文. 湖北省近50年气候变化特征分析[J]. 气象科学, 2002, 22(3):279-286.

    Google Scholar

    [38] Zheng Z F, Chen J H, Qi W. The character of climate variation of Hubei Province during recent 50 years[J]. Scientia Meteorologica Sinica, 2002, 22(3):279-286.

    Google Scholar

    [39] 许刚, 焦利民, 赵素丽, 等. 1990—2014年武汉市空气质量时空变化[J]. 环境工程, 2016, 34(4):80-85.

    Google Scholar

    [40] Xu G, Jiao L M, Zhao S L, et al. Spatial and temporal variability of air quality in Wuhan City from 1990 to 2014[J]. Environmental Engineering, 2016, 34(4):80-85.

    Google Scholar

    [41] 操文祥, 沈帆, 全继宏, 等. 武汉地区沙尘天气气溶胶粒径分布特性研究[J]. 中国环境监测, 2015, 31(6):47-52.

    Google Scholar

    [42] Cao W X, Shen F, Quan J H, et al. Aerosol particle size distribution research during sand storm in Wuhan area[J]. Environmental Monitoring in China, 2015, 31(6):47-52.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(456) PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint