[1] |
张方哲. 中国煤矿资源评估与开发可行性研究[D]. 北京:中国地质大学(北京),2010.
Google Scholar
|
[2] |
Zhang F Z. Coal resource assesment and development feasibility study of China[D]. Beijing:China University of Geosciences(Beijing),2010.
Google Scholar
|
[3] |
何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1991.
Google Scholar
|
[4] |
Yang L, Ling G D, et al. Mining subsidence theory[M]. Xuzhou: China University of Mining & Technology Publisher,
Google Scholar
|
[5] |
朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.
Google Scholar
|
[6] |
Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.
Google Scholar
|
[7] |
王志勇, 张继贤, 黄国满. 基于InSAR的济宁矿区沉降精细化监测与分析[J]. 中国矿业大学学报, 2014, 43(1):169-174.
Google Scholar
|
[8] |
Wang Z Y, Zhang J X, Huang G M. Precise monitoring and analysis of the land subsidence in Jining coal mining area based on InSAR technique[J]. Journal of China University of Mining & Technology, 2014, 43(1):169-174.
Google Scholar
|
[9] |
马飞虎, 姜珊珊, 孙翠羽. PSInSAR在铅山县矿区地表沉降监测中的应用[J]. 应用科学学报, 2018, 36(6):95-103.
Google Scholar
|
[10] |
Ma F H, Jiang S S, Sun C Y. Application of PSInSAR in monitoring land subsidence in Yanshan mining area[J]. Journal of Applied Sciences-Eletronics and Information Engineering, 2018, 36(6):95-103.
Google Scholar
|
[11] |
李德仁. InSAR技术进步与地面沉降监测应用[J]. 上海国土资源, 2013, 34(4):1-6.
Google Scholar
|
[12] |
Li D R. InSAR Technological progress and its application to land subsidence monitoring[J]. Shanghai Land & Resources, 2013, 34(4):1-6.
Google Scholar
|
[13] |
Zebker H A, Rosen P A, Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research, 1997, 102(B4):7547-7563.
Google Scholar
|
[14] |
Ferretti A, Prati C, Rocca F. Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
Google Scholar
|
[15] |
葛大庆, 王艳, 范景辉, 等. 地表形变D-InSAR监测方法及关键问题分析[J]. 国土资源遥感, 2007, 19(4):14-22.doi: 10.6046/gtzyyg.2007.04.03.
Google Scholar
|
[16] |
Ge D Q, Wang Y, Fan J H, et al. A study of surface deformation monitoring using differential SAR interferometry technique and an analysis of its key problems[J]. Remote Sensing for Land and Resources, 2007, 19(4):14-22.doi: 10.6046/gtzyyg.2007.04.03.
Google Scholar
|
[17] |
Casu F, Manzo M, Lanari R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data[J]. Remote Sensing of Environment, 2006, 102(3-4):195-210.
Google Scholar
|
[18] |
Williams S, Bock Y, Fang P. Integrated satellite interferometry:Tropospheric noise,GPS estimates and implications for interferometric synthetic aperture radar products[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B11).
Google Scholar
|
[19] |
尹宏杰, 朱建军, 李志伟. 基于SBAS的矿区形变监测研究[J]. 测绘学报, 2011, 40(1):52-58.
Google Scholar
|
[20] |
Yin H J, Zhu J J, Li Z W. Ground subsidence monitoring in mining area using DInSAR SBAS algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):52-58.
Google Scholar
|
[21] |
赵伟颖, 邓喀中, 杨俊凯, 等. 基于SBAS技术的采动区形变对建筑物的影响监测[J]. 煤矿安全, 2015, 485(2):205-208.
Google Scholar
|
[22] |
Zhao W Y, Deng K Z, Yang J K, et al. Monitoring on influence of mining area deformation based on SBAS technology on buildings[J]. Safety in Coal Mines, 2015, 485(2):205-208.
Google Scholar
|
[23] |
李达. 时序SAR技术在矿区形变监测中的应用[D]. 徐州:中国矿业大学, 2017.
Google Scholar
|
[24] |
Li D. Application of timing series SAR technology in deformation monitoring of mining area[D]. Xuzhou:China University of Mining, 2017.
Google Scholar
|
[25] |
阎跃观, 代文晨, 赵传武, 等. 基于SBAS-InSAR技术的矿区地表移动规律研究[J]. 中国矿业, 2019, 28(s2):177-180.
Google Scholar
|
[26] |
Yan Y G, Dai W C, Zhao C W, et al. Surface movement law of mining area based on SBAS-InSAR technology[J]. China Mining Magazine, 2019, 28(s2):177-180.
Google Scholar
|
[27] |
王亚男. InSAR技术用于矿区大量级塌陷监测研究[D]. 西安:长安大学, 2011.
Google Scholar
|
[28] |
Wang Y N. Research on large-scale mining collapse monintoring with InSAR technology[D]. Xi’an:Chang’an University, 2011.
Google Scholar
|
[29] |
朱煜峰. 矿区地面沉降的InSAR监测及参数反演[D]. 湖南:中南大学, 2013.
Google Scholar
|
[30] |
Zhu Y F. Analysis of ground subsidence monitoring in mining area using InSAR with parameter inversion[D]. Hunan:Central South University, 2013.
Google Scholar
|
[31] |
赵鑫. 基于RS,GIS的哈密三道岭矿区生态环境调查与评价[D]. 西安:西安科技大学, 2013.
Google Scholar
|
[32] |
Zhao X. Environmental investigation and assessment based on RS &GIS in Hami Sandaolin mining area[D]. Xi’an:Xi’an University of Science and Technology, 2013.
Google Scholar
|
[33] |
李凡. 潞安新疆煤化工(集团)有限公司砂墩子矿井3.00 Mt/年(一期)矿井建设项目环境影响评价公众参与第二次公示[R]. 新疆:新疆生态环保产业协会, 2017.
Google Scholar
|
[34] |
Li F. Lu’an Xinjiang Coal Chemical Industry (Group) Co.,Ltd.Shadunzi Mine 3.00 Mt/year(Phase 1)mine construction project environmental impact assessment public participation second public notice[R]. Xinjiang:Xinjiang Ecological Environmental Protection Industry Association, 2017.
Google Scholar
|
[35] |
Paolo B, Gianfranco F, Riccardo L, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(11):2375-2383.
Google Scholar
|
[36] |
Hooper A, Zebker H, Segall P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23):L23611.
Google Scholar
|
[37] |
Hooper A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302.
Google Scholar
|
[38] |
王琪. 利用永久散射体雷达干涉技术进行太原市地面沉降监测[J]. 测绘通报, 2014(5):71-75.
Google Scholar
|
[39] |
Wang Q. A study of ground deformation over Taiyuan City using PS-InSAR technique[J]. Bulletin of Surveying and Mapping, 2014(5):71-75.
Google Scholar
|
[40] |
Mostafa E, Mahdi M, Andy H. Application of dual-polarimetry SAR images in multitemporal InSAR processing[J]. IEEE Geoscience & Remote Sensing Letters, 2017, PP(99):1-5.
Google Scholar
|
[41] |
Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bull.Seismol.Soe.Am., 1985, 75(4):1135-1154.
Google Scholar
|
[42] |
Okada Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bull.Seismol.Soe.Am., 1992, 82(2):1018-1040.
Google Scholar
|
[43] |
Yang X M, Davis P M, Dieterich J H. Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing[J]. Journal of Geophysical Research:Solid Earth, 1988, 93(B5):4249-4257.
Google Scholar
|
[44] |
Carnec C, Fabriol H. Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field,Baja California,Mexico,using SAR interferometry[J]. Geophysical Research Letters, 1999, 26(9):1211-1214.
Google Scholar
|
[45] |
杨崇. 辽河油田地表沉降InSAR监测及储层参数反演[D]. 成都:西南交通大学, 2019.
Google Scholar
|
[46] |
Yang C. Surface subsidence InSAR monitoring and reservoir parameter inversion in liaohe oilfield[D]. Chengdu:Southwest Jiaotong University, 2019.
Google Scholar
|
[47] |
国家安全监管总局. 监总煤行(2014)61号—2014煤矿生产能力核定标准[S]. 北京:煤矿安监局行业安全基础管理指导司,2014.
Google Scholar
|
[48] |
State Administration of Work Safety State Council. No.61—2014 Verification standard of coal mine production capacity[S]. Beijing:Safety Supervision General Coal Bank, 2014. |