2024 Vol. 45, No. 5
Article Contents

LIN Yongjie, ZHENG Mianping. 2024. Reverse Weathering in Salt Lakes on the Qinghai-Xizang Plateau and Its Implications for Key Element Cycling. Acta Geoscientica Sinica, 45(5): 777-790. doi: 10.3975/cagsb.2024.082401
Citation: LIN Yongjie, ZHENG Mianping. 2024. Reverse Weathering in Salt Lakes on the Qinghai-Xizang Plateau and Its Implications for Key Element Cycling. Acta Geoscientica Sinica, 45(5): 777-790. doi: 10.3975/cagsb.2024.082401

Reverse Weathering in Salt Lakes on the Qinghai-Xizang Plateau and Its Implications for Key Element Cycling

More Information
  • Corresponding author: ZHENG Mianping
  • Reverse weathering in salt lake environments, also known as reverse chemical weathering, refers to the process by which authigenic clay minerals or carbonates form within the lake.This mechanism plays a crucial role in regulating the geochemical cycling of key elements in these environments.The Qinghai-Xizang Plateau(QTP) represents a globally significant salt lake region, functioning as a major carbon sink for inland ecosystems, and is rich in essential mineral resources such as lithium, potassium, rubidium, and cesium.Salt lakes in the QTP exhibit diverse water chemistry types, including carbonate, sulfate, and chloride, with each type influencing the types and formation mechanisms of salts and clay minerals differently.This paper reviews recent advances in the study of reverse weathering in salt lake environments and examines how reverse weathering processes in QTP salt lakes affect the geochemical cycling of key elements.The formation of authigenic clay minerals (e.g., illite) in these lakes is a primary mechanism for the consumption of critical elements such as lithium, potassium, rubidium in the brines.In contrast, the formation of carbonates has a relatively minor impact on the consumption of these elements unless it involves the formation of critical metal-containing minerals such as zabuyelite.Both authigenic clay minerals and carbonates significantly influence the inorganic carbon cycles of the lakes.Quantifying the extent of reverse weathering, elucidating the limiting factors, and assessing the impact of key element depletion are pivotal issues in studying salt lake mineral resources.The rapid advancement of nontraditional stable isotope techniques offers new opportunities for reverse weathering research.Salt lakes in the QTP serve as natural laboratories for reverse weathering studies, providing insights into critical metal element formation and carbon cycling processes and contributing to the theoretical development of reverse weathering.
  • 加载中
  • 陈晨, 闫庆贺, 章荣清, 等, 2024.锂的圈层循环与资源富集过程:从高原盐湖到造山带伟晶岩[J].岩石学报, 40(2):591-604.

    Google Scholar

    高扬, 罗飚, 沈迪, 等, 2023.青藏高原水体碳源汇过程的重新认知与挑战[J].湖泊科学, 35(6): 1853-1865.

    Google Scholar

    苟龙飞, 金章东, 贺茂勇, 2017.锂同位素示踪大陆风化: 进展与挑战[J].地球环境学报, 8(2): 89-102.

    Google Scholar

    金章东, 2011.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报, 33(1): 34-44, 77.

    Google Scholar

    李明慧, 朱立平, 王晓晓, 等, 2023.青藏高原湖泊中影响锂元素迁移和富集的矿物、元素及环境因素--以西藏郭扎错钻孔沉积物为例[J].中国无机分析化学, 13(7): 714-722.

    Google Scholar

    李庆宽, 王建萍, 樊启顺, 等, 2023.西藏盐湖沉积物: 一种潜在的铷、铯资源[J].地质学报, 97(10): 3410-3420.

    Google Scholar

    刘喜方, 郑绵平, 齐文, 2007.西藏扎布耶盐湖超大型B、Li 矿床成矿物质来源研究[J].地质学报, 81(12): 1709-1715.

    Google Scholar

    雒洋冰, 郑绵平, 任雅琼, 2017.青藏高原特种盐湖与深部火山-地热水的相关性[J].科技导报, 35(12): 44-48.

    Google Scholar

    吕苑苑, 2024.青藏高原盐湖硼、锂同位素变化规律及其对当雄错盐湖资源评价应用[J].地质力学学报, 30(1): 107-128.

    Google Scholar

    潘彤, 陈建洲, 丁成旺, 等, 2023.柴达木盆地盐湖黏土中锂、铷、铯超常富集及其开发潜力[J].中国地质, 50(6):1925-1927.

    Google Scholar

    佟伟, 廖志杰, 刘时彬, 等, 2000.西藏温泉志[M].北京: 科学出版社.

    Google Scholar

    汪齐连, 赵志琦, 刘丛强, 2006.锂同位素在环境地球化学研究中的新进展[J].矿物学报, 26(2): 196-202.

    Google Scholar

    吴雅琴, 赵志琦, 2011.高岭石和蒙脱石吸附Li+的实验研究[J].矿物学报, 31(2): 291-295.

    Google Scholar

    肖应凯, 祁海平, 王蕴慧, 等, 1994.青海大柴达木湖卤水、沉积物和水源水中的锂同位素组成[J].地球化学, 23(4):329-338.

    Google Scholar

    徐昶, 1982.柴达木盆地盐湖沉积物中的粘土矿物[J].矿物学报, 2(3): 226-230.

    Google Scholar

    徐昶, 1985.青藏盐湖沉积物中粘土矿物的初步研究[J].地质科学, 20(1): 87-96.

    Google Scholar

    徐昶, 1988.中国一些盐湖粘土矿物的初步研究[J].海洋与湖沼19(3): 278-285.

    Google Scholar

    徐昶, 1993.中国盐湖粘土矿物研究[M].北京: 科学出版社.

    Google Scholar

    杨守业, 贾琦, 许心宁, 等, 2023.海底反风化作用与关键元素循环[J].海洋地质与第四纪地质, 43(3): 26-34.

    Google Scholar

    余俊清, 洪荣昌, 高春亮, 等, 2018.柴达木盆地盐湖锂矿床成矿过程及分布规律[J].盐湖研究, 26(1): 7-14.

    Google Scholar

    赵彬, 姚鹏, 杨作升, 等, 2018.大河影响下的边缘海反风化作用[J].地球科学进展, 33(1): 42-51.

    Google Scholar

    赵越, 马万平, 杨洋, 等, 2022.黏土矿物对Li+的吸附实验研究--对黏土型锂矿成矿启示[J].矿物学报, 42(2): 141-153.

    Google Scholar

    郑绵平, 刘文高, 1987.新的锂矿物--扎布耶石(Zabuyelite)[J].地质论评, 33(4): 365-368.

    Google Scholar

    郑绵平, 向军, 魏新俊, 1989.青藏高原盐湖[M].北京: 科学出版社.

    Google Scholar

    郑绵平, 邢恩袁, 张雪飞, 等, 2023.全球锂矿床的分类、外生锂矿成矿作用与提取技术[J].中国地质, 50(6): 1599-1620.

    Google Scholar

    郑绵平, 张永生, 刘喜方, 等, 2016.中国盐湖科学技术研究的若干进展与展望[J].地质学报, 90(9): 2123-2166.

    Google Scholar

    郑绵平, 2001a.论中国盐湖[J].矿床地质, 20(2): 181-189, 128.

    Google Scholar

    郑绵平, 2001b.青藏高原盐湖资源研究的新进展[J].地球学报, 22(2): 97-102.

    Google Scholar

    郑绵平, 2010.中国盐湖资源与生态环境[J].地质学报, 84(11):1613-1622.

    Google Scholar

    郑喜玉, 唐渊, 徐昶, 等, 1988.西藏盐湖[M].北京: 科学出版社.

    Google Scholar

    ANDREWS E, POGGE VON STRANDMANN P A E, FANTLE M S, 2020.Exploring the importance of authigenic clay formation in the global Li cycle[J].Geochimica et Cosmochimica Acta, 289: 47-68.

    Google Scholar

    AZCUE J M, ROSA F, MUDROCH A, 1996.Distribution of major and trace elements in sediments and pore water of Lake Erie[J].Journal of Great Lakes Research, 22(2): 389-402.

    Google Scholar

    BARKAN E, LUZ B, LAZAR B, 2001.Dynamics of the carbon dioxide system in the Dead Sea[J].Geochimica et Cosmochimica Acta, 65(3): 355-368.

    Google Scholar

    BAZILEVICH N I, KOVDA V A, KANER N, et al., 1970.The Geochemistry of Soda Soils (translated from Russian)[M].Springfield: National Technical Information Service.

    Google Scholar

    BERGER G, SCHOTT J, GUY C, 1988.Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater:Experimental investigations and modelization between 50°and 300 ℃[J].Chemical Geology, 71(4): 297-312.

    Google Scholar

    BISOGNI JR J J, ARROYO S L, 1991.The effect of carbon dioxide equilibrium on pH in dilute lakes[J].Water research, 25(2): 185-190.

    Google Scholar

    CAO Cheng, BATAILLE C P, SONG Haijun, et al., 2022.Persistent Late Permian to Early Triassic warmth linked to enhanced reverse weathering[J].Nature Geoscience, 15(10):832-838.

    Google Scholar

    CHAN L H, EDMOND J M, THOMPSON G, et al., 1992.Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans[J].Earth and Planetary Science Letters, 108(1-3): 151-160.

    Google Scholar

    CHEN Chen, LEE C T A, TANG Ming, et al., 2020.Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment[J].Nature Communications, 11(1): 5313.

    Google Scholar

    CHEN Chen, YAN Qinghe, ZHANG Rongqing, et al., 2024.Lithium mineralization in plateau brines and orogen pegmatites: A lithium cycling perspective[J].Acta Petrologica Sinica, 40(2): 591-604(in Chinese with English abstract).

    Google Scholar

    CORNELL R M, 1993.Adsorption of cesium on minerals: A review[J].Journal of Radioanalytical and Nuclear Chemistry, 171(2): 483-500.

    Google Scholar

    DARRAGI F, TARDY Y, 1987.Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes[J].Chemical Geology, 63(1-2): 59-72.

    Google Scholar

    DAY C C, POGGE VON STRANDMANN P A E, MASON A J, 2021.Lithium isotopes and partition coefficients in inorganic carbonates: Proxy calibration for weathering reconstruction[J].Geochimica et Cosmochimica Acta, 305: 243-262.

    Google Scholar

    DU Jianghui, HALEY B A, MIX A C, et al., 2022.Reactive-transport modeling of neodymium and its radiogenic isotope in deep-sea sediments: The roles of authigenesis, marine silicate weathering and reverse weathering[J].Earth and Planetary Science Letters, 596: 117792.

    Google Scholar

    EUGSTER H P, HARDIE L A, 1978.Saline lakes[M]//Lakes:chemistry, geology, physics.New York: Springer237-293.

    Google Scholar

    GANOR J, MOGOLLÓN J L, LASAGA A C, 1995.The effect of pH on kaolinite dissolution rates and on activation energy[J].Geochimica et Cosmochimica Acta, 59(6): 1037-1052.

    Google Scholar

    GAO Yang, LUO Biao, SHEN Di, et al., 2023.Recognition and challenges of the inland water carbon source and sink processes on the Qinghai-Xizang Plateau[J].Journal of Lake Sciences, 35(6): 1853-1865(in Chinese with English abstract).

    Google Scholar

    GARRELS R M, MACKENZIE F T, 1971.Evolution of sedimentary rocks[M].New York: W W Norton & Company Ltd.

    Google Scholar

    GAST R G, 1972.Alkali metal cation exchange on chambers montmorillonite[J].Soil Science Society of America Journal, 36(1): 14-19.

    Google Scholar

    GOLAN R, GAVRIELI I, GANOR J, et al., 2016.Controls on the pH of hyper-saline lakes–A lesson from the Dead Sea[J].Earth and Planetary Science Letters, 434: 289-297.

    Google Scholar

    GOU Longfei, JIN Zhangdong, HE Maoyong, 2017.Using lithium isotopes traces continental weathering: Progresses and challenges[J].Journal of Earth Environment, 8(2): 89-102(in Chinese with English abstract).

    Google Scholar

    HAMMOND D, 2001.Pore water chemistry[M]//Encyclopedia of Ocean Sciences.Amsterdam: Elsevier: 2263-2271.

    Google Scholar

    HARDER H, 1974.Illite mineral synthesis at surface temperatures[J].Chemical Geology, 14(4): 241-253.

    Google Scholar

    HEDENQUIST J W, ARRIBAS A, GONZALEZ-URIEN E, 2000.Exploration for epithermal gold deposits[M]//HAGEMANN S G, BROWN P E.Gold in 2000: Reviews in Economic Geology.Littleton: Society of Economic Geologists: 245-277.

    Google Scholar

    HIDAYAH R A, ADI PRASETIYA I G N, DZAKIYA N A, 2022.Alteration Characteristics and Precious Metal Availability in Gunung Gembes & Surroundings, Jeruk Village, Pacitan Regency, East Java Province[J].Journal of Applied Geospatial Information, 6(1): 565-568.

    Google Scholar

    HINDSHAW R S, TOSCA R, GOÛT T L, et al., 2019.Experimental constraints on Li isotope fractionation during clay formation[J].Geochimica et Cosmochimica Acta, 250:219-237.

    Google Scholar

    HUH Y, CHAN L H, ZHANG Libo, et al., 1998.Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget[J].Geochimica et Cosmochimica Acta, 62(12): 2039-2051.

    Google Scholar

    ISSON T T, PLANAVSKY N J, 2018.Reverse weathering as a long-term stabilizer of marine pH and planetary climate[J].Nature, 560(7719): 471-475.

    Google Scholar

    ISSON T, RAUZI S, 2024.Oxygen isotope ensemble reveals Earth’s seawater, temperature, and carbon cycle history[J].Science, 383(6683): 666-670.

    Google Scholar

    JIA Junjie, SUN Kun, LÜ Sidan, et al., 2022.Determining whether Qinghai–Xizang Plateau waterbodies have acted like carbon sinks or sources over the past 20 years[J].Science Bulletin, 67(22): 2345-2357.

    Google Scholar

    JING Zhangdong, 2011.Composition, origin and environmental interpretation of minerals in lake sediments and recent progress[J].Journal of Earth Sciences and Environment, 33(1):34-44, 77(in Chinese with English abstract).

    Google Scholar

    JONES B F, WEIR A H, 1983.Clay minerals of lake abert, an alkaline, saline lake[J].Clays and Clay Minerals, 31(3):161-172.

    Google Scholar

    KÖHLER S J, DUFAUD F, OELKERS E H, 2003.An experimental study of illite dissolution kinetics as a function of ph from 1.4 to 12.4 and temperature from 5 to 50 ℃[J].Geochimica et Cosmochimica Acta, 67(19): 3583-3594.

    Google Scholar

    KONDRATYEV K Y, ADAMENKO V N, VLASOV V P, et al., 2018.Using large lakes as analogues for oceanographic studies[M]//Modeling Marine Systems.Boca Raton: CRC Press: 299-344.

    Google Scholar

    LERMAN A, STUMM W, 1989.CO2 storage and alkalinity trends in lakes[J].Water Research, 23(2): 139-146.

    Google Scholar

    LI Fangbing, PENMAN D, PLANAVSKY N, et al., 2021.Reverse weathering may amplify post-Snowball atmospheric carbon dioxide levels[J].Precambrian Research, 364: 106279.

    Google Scholar

    LI Gaojun, ELDERFIELD H, 2013.Evolution of carbon cycle over the past 100 million years[J].Geochimica et Cosmochimica Acta, 103: 11-25.

    Google Scholar

    LI Minghui, SUN Shurui, FANG Xiaomin, et al., 2018.Clay minerals and isotopes of Pleistocene lacustrine sediments from the western Qaidam Basin, NE Xizang Plateau[J].Applied Clay Science, 162: 382-390.

    Google Scholar

    LI Minghui, ZHU Liping, WANG Xiaoxiao, et al., 2023.Minerals, Elements and Environmental Factors Affecting the Migration and Enrichment of Lithium in the Qinghai-Xizang Plateau Lakes: A Case Study of Sediments in Gozha Co Borehole, Xizang[J].Chinese Journal of Inorganic Analytical Chemistry, 13(7): 714-722(in Chinese with English abstract).

    Google Scholar

    LI Qingkuan, WANG Jianping, FAN Qishun, et al., 2023.Rubidium and cesium enrichment in lacustrine sediments from Xizang salt lakes: A potential resource[J].Acta Geologica Sinica, 97(10): 3410-3420(in Chinese with English abstract).

    Google Scholar

    LI Weimo, WANG Binbin, MA Yaoming, 2024.Quantifying the CO2 sink intensity of large and small saline lakes on the Xizang Plateau[J].Science of the Total Environment, 938:173408.

    Google Scholar

    LI Yulong, MIAO Weiliang, HE Maoyong, et al., 2023.Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Xizang Plateau: Evidence from hydrogeochemistry and lithium isotopes[J].Ore Geology Reviews, 155: 105356.

    Google Scholar

    LI Zhengyan, HE Maoyong, LI Binkai, et al., 2024.Multi-isotopic composition (Li and B isotopes) and Hydrochemistry characterization of the Lakko Co Li-Rich Salt Lake in Xizang, China: Origin and Hydrological Processes[J].Journal of Hydrology, 630: 130714.

    Google Scholar

    LIAO Yuanshan, XIAO Qitao, LI Yimin, et al., 2024.Salinity is an important factor in carbon emissions from an inland lake in arid region[J].Science of the Total Environment, 906: 167721.

    Google Scholar

    LIN Yongjie, KNAPP W J, LI Weiqiang, et al., 2023.Magnesium Isotope Constraints on the Holocene Hydromagnesite Formation in Alkaline Lake Dujiali, Central Qinghai-Xizang Plateau[J].Journal of Geophysical Research: Earth Surface, 128(3): e2022JF006907.

    Google Scholar

    LIN Yongjie, MERLI M, CENSI P, et al., 2024.Experimental and theoretical constraints on lithium isotope fractionation during brine evaporation and halite precipitation[J].Geochimica et Cosmochimica Acta, 374: 250-263.

    Google Scholar

    LIU Xifang, ZHENG Mianping, QI Wen, 2007.Sources of Ore-Forming Materials of the Superlarge B and Li Deposit in Zabuye Salt Lake, Xizang, China[J].Acta Geologica Sinica, 81(12): 1709-1715(in Chinese).

    Google Scholar

    LOWSON R T, COMARMOND M C J, RAJARATNAM G, et al., 2005.The kinetics of the dissolution of chlorite as a function of pH and at 25 ℃[J].Geochimica et Cosmochimica Acta, 69(7): 1687-1699.

    Google Scholar

    LUO Yangbing, ZHENG Mianping, REN Yaqiong, 2017.Metallogenic correlation of special salt lake and hydrotherm, Qinghai-Xizang Plateau, China[J].Science & Technology Review, 35(12): 44-48(in Chinese with English abstract).

    Google Scholar

    LÜ Yuanyuan, 2024.Variation patterns of boron and lithium isotopes in salt lakes on the Qinghai-Xizang Plateau and their application in evaluating resources in the Damxung Co salt lake[J].Journal of Geomechanics, 30(1): 107-128(in Chinese with English abstract).

    Google Scholar

    MACKENZIE F T, GARRELS R M, 1966.Chemical mass balance between rivers and oceans[J].American Journal of Science, 264(7): 507-525.

    Google Scholar

    MACKENZIE F T, KUMP L R, 1995.Reverse weathering, clay mineral formation, and oceanic element cycles[J].Science, 270(5236): 586.

    Google Scholar

    MARCÉ R, OBRADOR B, MORGUÍ J A, et al., 2015.Carbonate weathering as a driver of CO2 supersaturation in lakes[J].Nature Geoscience, 8: 107-111.

    Google Scholar

    MESSAGER M L, LEHNER B, GRILL G, et al., 2016.Estimating the volume and age of water stored in global lakes using a geo-statistical approach[J].Nature Communications, 7:13603.

    Google Scholar

    MICHALOPOULOS P, ALLER R C, REEDER R J, 2000.Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds[J].Geology, 28(12):1095-1098.

    Google Scholar

    MICHALOPOULOS P, ALLER R C, 1995.Rapid clay mineral formation in Amazon Delta sediments: Reverse weathering and oceanic elemental cycles[J].Science, 270(5236):614-617.

    Google Scholar

    MILLOT R, SCAILLET B, SANJUAN B, 2010.Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique(French West Indies) and experimental approach[J].Geochimica et Cosmochimica Acta, 74(6): 1852-1871.

    Google Scholar

    MISRA S, FROELICH P N, 2012.Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering[J].Science, 335(6070): 818-823.

    Google Scholar

    PAN Tong, CHEN Jianzhou, DING Chengwang, et al., 2023.Supernormal enrichment of lithium, rubidium and cesium and its development potential in the clay of Salt Lake of Qaidam Basin[J].Geology in China, 50(6): 1925-1927(in Chinese with English abstract).

    Google Scholar

    PISTINER J S, HENDERSON G M, 2003.Lithium-isotope fractionation during continental weathering processes[J].Earth Planetary Science Letters, 214(1-2): 327-339.

    Google Scholar

    POGGE VON STRANDMANN P A E, FRASER W T, HAMMOND S J, et al., 2019.Experimental determination of Li isotope behaviour during basalt weathering[J].Chemical Geology, 517: 34-43.

    Google Scholar

    POGGE VON STRANDMANN P A E, LIU Xianyi, LIU Chunyao, et al., 2022.Lithium isotope behaviour during basalt weathering experiments amended with organic acids[J].Geochimica et Cosmochimica Acta, 328: 37-57.

    Google Scholar

    RAHROMOSTAQIM M, SAHIMI M, 2019.Molecular dynamics simulation of hydration and swelling of mixed-layer clays in the presence of carbon dioxide[J].The Journal of Physical Chemistry C, 123(7): 4243-4255.

    Google Scholar

    RAMOS D P S, MORGAN L E, LLOYD N S, et al., 2018.Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids[J].Geochimica et Cosmochimica Acta, 236: 99-120.

    Google Scholar

    SULPIS O, HUMPHREYS M P, WILHELMUS M M, et al., 2022.RADIv1: A non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave[J].Geoscientific Model Development, 15(5): 2105-2131.

    Google Scholar

    TEPPEN B J, MILLER D M, 2006.Hydration energy determines isovalent cation exchange selectivity by clay minerals[J].Soil Science Society of America Journal, 70(1): 31-40.

    Google Scholar

    TOMASCAK P B, HEMMING N G, HEMMING S R, 2003.The lithium isotopic composition of waters of the Mono Basin, California[J].Geochimica et Cosmochimica Acta, 67(4): 601-611.

    Google Scholar

    TONG Wei, LIAO Zhijie, LIU Shibin, et al, 2000.Xizang Hot Springs[M].Beijing: Science Press(in Chinese).

    Google Scholar

    URBAN N R, AUER M T, GREEN S A, et al., 2005.Carbon cycling in lake superior[J].Journal of Geophysical Research(Oceans), 110: C06S90.

    Google Scholar

    VON DAMM K L, EDMOND J M, 1984.Reverse weathering in the closed-basin lakes of the Ethiopian Rift[J].American Journal of Science, 284(7): 835-862.

    Google Scholar

    WAY J T, 1852.On the power of soils to absorb manure[J].Journal of the Royal Agricultural Society of England, 13: 123-143.

    Google Scholar

    WEYNELL M, WIECHERT U, SCHUESSLER J A, 2017.Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Xizang Plateau[J].Geochimica et Cosmochimica Acta, 213: 155-177.

    Google Scholar

    WU Yaqin, ZHAO Zhiqi, 2011.Experimental study on the adsorption of Li+on kaolinite and montmorillonite[J].Acta Mineralogica Sinica, 31(2): 291-295(in Chinese with English abstract).

    Google Scholar

    XIAO Yingkai, QI Haiping, WANG Yunhui, et al., 1994.Lithium isotopic compositions of brine sediments and source water in Da Qaidam Lake, Qinghai, China[J].Geochimica, 23(4):329-338(in Chinese with English abstract).

    Google Scholar

    XU Chang, 1982.Clay minerals in salt lake sediments of the Qaidam basin[J].Acta Mineralogica Sinica, 2(3): 226-230(in Chinese with English abstract).

    Google Scholar

    XU Chang, 1985.Primary study of clay minerals and its significance in salt lake sediments of the Qinghai-Xizang[J].Scientia Geologica Sinica, 20(1): 87-96(in Chinese with English abstract).

    Google Scholar

    XU Chang, 1988.Study of clay minerals in some salt lakes of China[J].Oceanologia et Limnologia Sinica, 19(3):278-285(in Chinese with English abstract).

    Google Scholar

    XU Chang, 1993.Advance of Clay Minerals Research in Salt Lakes of China[M].Beijing: Science Press(in Chinese).

    Google Scholar

    XUE Fei, TAN Hongbing, ZHANG Xiying, et al., 2024.Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Xizang Plateau[J].Geoscience Frontiers, 15(2): 101768.

    Google Scholar

    YAN Lijuan, ZHENG Mianping, 2015.The response of lake variations to climate change in the past forty years: A case study of the northeastern Xizang Plateau and adjacent areas, China[J].Quaternary International, 371: 31-48.

    Google Scholar

    YANG Shouye, JIA Qi, XU Xinning, et al., 2023.Submarine reverse weathering and its effect on oceanic elements cycling[J].Marine Geology & Quaternary Geology, 43(3):26-34(in Chinese with English abstract).

    Google Scholar

    YAO Peng, ZHAO Bin, BIANCHI T S, et al., 2014.Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf:Implications for carbon preservation and authigenic mineral formation[J].Continental Shelf Research, 91: 1-11.

    Google Scholar

    YOU Chenfeng, CHAN L H, GIESKES J M, et al., 2003.Seawater intrusion through the oceanic crust and carbonate sediment in the Equatorial Pacific: Lithium abundance and isotopic evidence[J].Geophysical Research Letters, 30(21): 2120.

    Google Scholar

    YU Junqing, HONG Rongchang, GAO Chunliang, et al., 2018.Lithiunm brine deposits in Qaidam Basin: Constraints on formation processes and distribution pattern[J].Journal of Salt Lake Research, 26(1): 7-14(in Chinese with English abstract).

    Google Scholar

    YURETICH R F, CERLING T E, 1983.Hydrogeochemistry of Lake Turkana, Kenya: Mass balance and mineral reactions in an alkaline lake[J].Geochimica et Cosmochimica Acta, 47(6):1099-1109.

    Google Scholar

    ZHANG Libo, CHAN L H, GIESKES J M, 1998.Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin[J].Geochimica et Cosmochimica Acta, 62(14): 2437-2450.

    Google Scholar

    ZHANG X Y, GAILLARDET J, BARRIER L, et al., 2022.Li and Si isotopes reveal authigenic clay formation in a palaeo-delta[J].Earth and Planetary Science Letters, 578:117339.

    Google Scholar

    ZHANG X Y, SALDI G D, SCHOTT J, et al., 2021.Experimental constraints on Li isotope fractionation during the interaction between kaolinite and seawater[J].Geochimica et Cosmochimica Acta, 292: 333-347.

    Google Scholar

    ZHAO Bin, YAO Peng, YANG Zuosheng, et al., 2018.Reverse weathering in river-dominated marginal seas[J].Advances in Earth Science, 33(1): 42-51(in Chinese with English abstract).

    Google Scholar

    ZHAO Yue, MA Wanping, YANG Yang, et al., 2022.Experimental study on the adsorption of Li+ by clay minerals-implications for the mineralization of clay-type lithium deposit[J].Acta Mineralogica Sinica, 42(2): 141-153(in Chinese with English abstract).

    Google Scholar

    ZHENG Mianping, LIU Wengao, 1987.Zabuyelite, a new lithium mineral[J].Geological Review, 33(4): 365-368(in Chinese with English abstract).

    Google Scholar

    ZHENG Mianping, XIANG Jun, WEI Xinjun, 1989.Saline lakes on the qinghai-xizang plateau[M].Beijing: Science Press(in Chinese).

    Google Scholar

    ZHENG Mianping, XING Enyuan, ZHANG Xuefei, et al., 2023.Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits[J].Geology in China, 50(6): 1599-1620(in Chinese with English abstract).

    Google Scholar

    ZHENG Mianping, ZHANG Yongsheng, LIU Xifang, et al., 2016.Progress and Prospects of Salt Lake Research in China[J].Acta Geologica Sinica, 90(9): 2123-2166(in Chinese with English abstract).

    Google Scholar

    ZHENG Mianping, 2001a.On saline lakes of China[J].Mineral Deposits, 20(2): 181-189, 128(in Chinese with English abstract).

    Google Scholar

    ZHENG Mianping, 2001b.Study Advances in Saline Lake Resources on the Qinghai-Xizang Pleteau[J].Acta Geoscientia Sinica, 22(2): 97-102(in Chinese with English abstract).

    Google Scholar

    ZHENG Mianping, 2010.Salt Lake Resources and Eco-environment in China[J].Acta Geologica Sinica, 84(11):1613-1622(in Chinese with English abstract).

    Google Scholar

    ZHENG Xiyu, TANG Yuan, XU Chang, et al., 1988.Xizang Salt Lakes[M].Beijing: Science Press(in Chinese).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(154) PDF downloads(35) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint