|
陈晨, 闫庆贺, 章荣清, 等, 2024.锂的圈层循环与资源富集过程:从高原盐湖到造山带伟晶岩[J].岩石学报, 40(2):591-604.
Google Scholar
|
|
高扬, 罗飚, 沈迪, 等, 2023.青藏高原水体碳源汇过程的重新认知与挑战[J].湖泊科学, 35(6): 1853-1865.
Google Scholar
|
|
苟龙飞, 金章东, 贺茂勇, 2017.锂同位素示踪大陆风化: 进展与挑战[J].地球环境学报, 8(2): 89-102.
Google Scholar
|
|
金章东, 2011.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报, 33(1): 34-44, 77.
Google Scholar
|
|
李明慧, 朱立平, 王晓晓, 等, 2023.青藏高原湖泊中影响锂元素迁移和富集的矿物、元素及环境因素--以西藏郭扎错钻孔沉积物为例[J].中国无机分析化学, 13(7): 714-722.
Google Scholar
|
|
李庆宽, 王建萍, 樊启顺, 等, 2023.西藏盐湖沉积物: 一种潜在的铷、铯资源[J].地质学报, 97(10): 3410-3420.
Google Scholar
|
|
刘喜方, 郑绵平, 齐文, 2007.西藏扎布耶盐湖超大型B、Li 矿床成矿物质来源研究[J].地质学报, 81(12): 1709-1715.
Google Scholar
|
|
雒洋冰, 郑绵平, 任雅琼, 2017.青藏高原特种盐湖与深部火山-地热水的相关性[J].科技导报, 35(12): 44-48.
Google Scholar
|
|
吕苑苑, 2024.青藏高原盐湖硼、锂同位素变化规律及其对当雄错盐湖资源评价应用[J].地质力学学报, 30(1): 107-128.
Google Scholar
|
|
潘彤, 陈建洲, 丁成旺, 等, 2023.柴达木盆地盐湖黏土中锂、铷、铯超常富集及其开发潜力[J].中国地质, 50(6):1925-1927.
Google Scholar
|
|
佟伟, 廖志杰, 刘时彬, 等, 2000.西藏温泉志[M].北京: 科学出版社.
Google Scholar
|
|
汪齐连, 赵志琦, 刘丛强, 2006.锂同位素在环境地球化学研究中的新进展[J].矿物学报, 26(2): 196-202.
Google Scholar
|
|
吴雅琴, 赵志琦, 2011.高岭石和蒙脱石吸附Li+的实验研究[J].矿物学报, 31(2): 291-295.
Google Scholar
|
|
肖应凯, 祁海平, 王蕴慧, 等, 1994.青海大柴达木湖卤水、沉积物和水源水中的锂同位素组成[J].地球化学, 23(4):329-338.
Google Scholar
|
|
徐昶, 1982.柴达木盆地盐湖沉积物中的粘土矿物[J].矿物学报, 2(3): 226-230.
Google Scholar
|
|
徐昶, 1985.青藏盐湖沉积物中粘土矿物的初步研究[J].地质科学, 20(1): 87-96.
Google Scholar
|
|
徐昶, 1988.中国一些盐湖粘土矿物的初步研究[J].海洋与湖沼19(3): 278-285.
Google Scholar
|
|
徐昶, 1993.中国盐湖粘土矿物研究[M].北京: 科学出版社.
Google Scholar
|
|
杨守业, 贾琦, 许心宁, 等, 2023.海底反风化作用与关键元素循环[J].海洋地质与第四纪地质, 43(3): 26-34.
Google Scholar
|
|
余俊清, 洪荣昌, 高春亮, 等, 2018.柴达木盆地盐湖锂矿床成矿过程及分布规律[J].盐湖研究, 26(1): 7-14.
Google Scholar
|
|
赵彬, 姚鹏, 杨作升, 等, 2018.大河影响下的边缘海反风化作用[J].地球科学进展, 33(1): 42-51.
Google Scholar
|
|
赵越, 马万平, 杨洋, 等, 2022.黏土矿物对Li+的吸附实验研究--对黏土型锂矿成矿启示[J].矿物学报, 42(2): 141-153.
Google Scholar
|
|
郑绵平, 刘文高, 1987.新的锂矿物--扎布耶石(Zabuyelite)[J].地质论评, 33(4): 365-368.
Google Scholar
|
|
郑绵平, 向军, 魏新俊, 1989.青藏高原盐湖[M].北京: 科学出版社.
Google Scholar
|
|
郑绵平, 邢恩袁, 张雪飞, 等, 2023.全球锂矿床的分类、外生锂矿成矿作用与提取技术[J].中国地质, 50(6): 1599-1620.
Google Scholar
|
|
郑绵平, 张永生, 刘喜方, 等, 2016.中国盐湖科学技术研究的若干进展与展望[J].地质学报, 90(9): 2123-2166.
Google Scholar
|
|
郑绵平, 2001a.论中国盐湖[J].矿床地质, 20(2): 181-189, 128.
Google Scholar
|
|
郑绵平, 2001b.青藏高原盐湖资源研究的新进展[J].地球学报, 22(2): 97-102.
Google Scholar
|
|
郑绵平, 2010.中国盐湖资源与生态环境[J].地质学报, 84(11):1613-1622.
Google Scholar
|
|
郑喜玉, 唐渊, 徐昶, 等, 1988.西藏盐湖[M].北京: 科学出版社.
Google Scholar
|
|
ANDREWS E, POGGE VON STRANDMANN P A E, FANTLE M S, 2020.Exploring the importance of authigenic clay formation in the global Li cycle[J].Geochimica et Cosmochimica Acta, 289: 47-68.
Google Scholar
|
|
AZCUE J M, ROSA F, MUDROCH A, 1996.Distribution of major and trace elements in sediments and pore water of Lake Erie[J].Journal of Great Lakes Research, 22(2): 389-402.
Google Scholar
|
|
BARKAN E, LUZ B, LAZAR B, 2001.Dynamics of the carbon dioxide system in the Dead Sea[J].Geochimica et Cosmochimica Acta, 65(3): 355-368.
Google Scholar
|
|
BAZILEVICH N I, KOVDA V A, KANER N, et al., 1970.The Geochemistry of Soda Soils (translated from Russian)[M].Springfield: National Technical Information Service.
Google Scholar
|
|
BERGER G, SCHOTT J, GUY C, 1988.Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater:Experimental investigations and modelization between 50°and 300 ℃[J].Chemical Geology, 71(4): 297-312.
Google Scholar
|
|
BISOGNI JR J J, ARROYO S L, 1991.The effect of carbon dioxide equilibrium on pH in dilute lakes[J].Water research, 25(2): 185-190.
Google Scholar
|
|
CAO Cheng, BATAILLE C P, SONG Haijun, et al., 2022.Persistent Late Permian to Early Triassic warmth linked to enhanced reverse weathering[J].Nature Geoscience, 15(10):832-838.
Google Scholar
|
|
CHAN L H, EDMOND J M, THOMPSON G, et al., 1992.Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans[J].Earth and Planetary Science Letters, 108(1-3): 151-160.
Google Scholar
|
|
CHEN Chen, LEE C T A, TANG Ming, et al., 2020.Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment[J].Nature Communications, 11(1): 5313.
Google Scholar
|
|
CHEN Chen, YAN Qinghe, ZHANG Rongqing, et al., 2024.Lithium mineralization in plateau brines and orogen pegmatites: A lithium cycling perspective[J].Acta Petrologica Sinica, 40(2): 591-604(in Chinese with English abstract).
Google Scholar
|
|
CORNELL R M, 1993.Adsorption of cesium on minerals: A review[J].Journal of Radioanalytical and Nuclear Chemistry, 171(2): 483-500.
Google Scholar
|
|
DARRAGI F, TARDY Y, 1987.Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes[J].Chemical Geology, 63(1-2): 59-72.
Google Scholar
|
|
DAY C C, POGGE VON STRANDMANN P A E, MASON A J, 2021.Lithium isotopes and partition coefficients in inorganic carbonates: Proxy calibration for weathering reconstruction[J].Geochimica et Cosmochimica Acta, 305: 243-262.
Google Scholar
|
|
DU Jianghui, HALEY B A, MIX A C, et al., 2022.Reactive-transport modeling of neodymium and its radiogenic isotope in deep-sea sediments: The roles of authigenesis, marine silicate weathering and reverse weathering[J].Earth and Planetary Science Letters, 596: 117792.
Google Scholar
|
|
EUGSTER H P, HARDIE L A, 1978.Saline lakes[M]//Lakes:chemistry, geology, physics.New York: Springer237-293.
Google Scholar
|
|
GANOR J, MOGOLLÓN J L, LASAGA A C, 1995.The effect of pH on kaolinite dissolution rates and on activation energy[J].Geochimica et Cosmochimica Acta, 59(6): 1037-1052.
Google Scholar
|
|
GAO Yang, LUO Biao, SHEN Di, et al., 2023.Recognition and challenges of the inland water carbon source and sink processes on the Qinghai-Xizang Plateau[J].Journal of Lake Sciences, 35(6): 1853-1865(in Chinese with English abstract).
Google Scholar
|
|
GARRELS R M, MACKENZIE F T, 1971.Evolution of sedimentary rocks[M].New York: W W Norton & Company Ltd.
Google Scholar
|
|
GAST R G, 1972.Alkali metal cation exchange on chambers montmorillonite[J].Soil Science Society of America Journal, 36(1): 14-19.
Google Scholar
|
|
GOLAN R, GAVRIELI I, GANOR J, et al., 2016.Controls on the pH of hyper-saline lakes–A lesson from the Dead Sea[J].Earth and Planetary Science Letters, 434: 289-297.
Google Scholar
|
|
GOU Longfei, JIN Zhangdong, HE Maoyong, 2017.Using lithium isotopes traces continental weathering: Progresses and challenges[J].Journal of Earth Environment, 8(2): 89-102(in Chinese with English abstract).
Google Scholar
|
|
HAMMOND D, 2001.Pore water chemistry[M]//Encyclopedia of Ocean Sciences.Amsterdam: Elsevier: 2263-2271.
Google Scholar
|
|
HARDER H, 1974.Illite mineral synthesis at surface temperatures[J].Chemical Geology, 14(4): 241-253.
Google Scholar
|
|
HEDENQUIST J W, ARRIBAS A, GONZALEZ-URIEN E, 2000.Exploration for epithermal gold deposits[M]//HAGEMANN S G, BROWN P E.Gold in 2000: Reviews in Economic Geology.Littleton: Society of Economic Geologists: 245-277.
Google Scholar
|
|
HIDAYAH R A, ADI PRASETIYA I G N, DZAKIYA N A, 2022.Alteration Characteristics and Precious Metal Availability in Gunung Gembes & Surroundings, Jeruk Village, Pacitan Regency, East Java Province[J].Journal of Applied Geospatial Information, 6(1): 565-568.
Google Scholar
|
|
HINDSHAW R S, TOSCA R, GOÛT T L, et al., 2019.Experimental constraints on Li isotope fractionation during clay formation[J].Geochimica et Cosmochimica Acta, 250:219-237.
Google Scholar
|
|
HUH Y, CHAN L H, ZHANG Libo, et al., 1998.Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget[J].Geochimica et Cosmochimica Acta, 62(12): 2039-2051.
Google Scholar
|
|
ISSON T T, PLANAVSKY N J, 2018.Reverse weathering as a long-term stabilizer of marine pH and planetary climate[J].Nature, 560(7719): 471-475.
Google Scholar
|
|
ISSON T, RAUZI S, 2024.Oxygen isotope ensemble reveals Earth’s seawater, temperature, and carbon cycle history[J].Science, 383(6683): 666-670.
Google Scholar
|
|
JIA Junjie, SUN Kun, LÜ Sidan, et al., 2022.Determining whether Qinghai–Xizang Plateau waterbodies have acted like carbon sinks or sources over the past 20 years[J].Science Bulletin, 67(22): 2345-2357.
Google Scholar
|
|
JING Zhangdong, 2011.Composition, origin and environmental interpretation of minerals in lake sediments and recent progress[J].Journal of Earth Sciences and Environment, 33(1):34-44, 77(in Chinese with English abstract).
Google Scholar
|
|
JONES B F, WEIR A H, 1983.Clay minerals of lake abert, an alkaline, saline lake[J].Clays and Clay Minerals, 31(3):161-172.
Google Scholar
|
|
KÖHLER S J, DUFAUD F, OELKERS E H, 2003.An experimental study of illite dissolution kinetics as a function of ph from 1.4 to 12.4 and temperature from 5 to 50 ℃[J].Geochimica et Cosmochimica Acta, 67(19): 3583-3594.
Google Scholar
|
|
KONDRATYEV K Y, ADAMENKO V N, VLASOV V P, et al., 2018.Using large lakes as analogues for oceanographic studies[M]//Modeling Marine Systems.Boca Raton: CRC Press: 299-344.
Google Scholar
|
|
LERMAN A, STUMM W, 1989.CO2 storage and alkalinity trends in lakes[J].Water Research, 23(2): 139-146.
Google Scholar
|
|
LI Fangbing, PENMAN D, PLANAVSKY N, et al., 2021.Reverse weathering may amplify post-Snowball atmospheric carbon dioxide levels[J].Precambrian Research, 364: 106279.
Google Scholar
|
|
LI Gaojun, ELDERFIELD H, 2013.Evolution of carbon cycle over the past 100 million years[J].Geochimica et Cosmochimica Acta, 103: 11-25.
Google Scholar
|
|
LI Minghui, SUN Shurui, FANG Xiaomin, et al., 2018.Clay minerals and isotopes of Pleistocene lacustrine sediments from the western Qaidam Basin, NE Xizang Plateau[J].Applied Clay Science, 162: 382-390.
Google Scholar
|
|
LI Minghui, ZHU Liping, WANG Xiaoxiao, et al., 2023.Minerals, Elements and Environmental Factors Affecting the Migration and Enrichment of Lithium in the Qinghai-Xizang Plateau Lakes: A Case Study of Sediments in Gozha Co Borehole, Xizang[J].Chinese Journal of Inorganic Analytical Chemistry, 13(7): 714-722(in Chinese with English abstract).
Google Scholar
|
|
LI Qingkuan, WANG Jianping, FAN Qishun, et al., 2023.Rubidium and cesium enrichment in lacustrine sediments from Xizang salt lakes: A potential resource[J].Acta Geologica Sinica, 97(10): 3410-3420(in Chinese with English abstract).
Google Scholar
|
|
LI Weimo, WANG Binbin, MA Yaoming, 2024.Quantifying the CO2 sink intensity of large and small saline lakes on the Xizang Plateau[J].Science of the Total Environment, 938:173408.
Google Scholar
|
|
LI Yulong, MIAO Weiliang, HE Maoyong, et al., 2023.Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Xizang Plateau: Evidence from hydrogeochemistry and lithium isotopes[J].Ore Geology Reviews, 155: 105356.
Google Scholar
|
|
LI Zhengyan, HE Maoyong, LI Binkai, et al., 2024.Multi-isotopic composition (Li and B isotopes) and Hydrochemistry characterization of the Lakko Co Li-Rich Salt Lake in Xizang, China: Origin and Hydrological Processes[J].Journal of Hydrology, 630: 130714.
Google Scholar
|
|
LIAO Yuanshan, XIAO Qitao, LI Yimin, et al., 2024.Salinity is an important factor in carbon emissions from an inland lake in arid region[J].Science of the Total Environment, 906: 167721.
Google Scholar
|
|
LIN Yongjie, KNAPP W J, LI Weiqiang, et al., 2023.Magnesium Isotope Constraints on the Holocene Hydromagnesite Formation in Alkaline Lake Dujiali, Central Qinghai-Xizang Plateau[J].Journal of Geophysical Research: Earth Surface, 128(3): e2022JF006907.
Google Scholar
|
|
LIN Yongjie, MERLI M, CENSI P, et al., 2024.Experimental and theoretical constraints on lithium isotope fractionation during brine evaporation and halite precipitation[J].Geochimica et Cosmochimica Acta, 374: 250-263.
Google Scholar
|
|
LIU Xifang, ZHENG Mianping, QI Wen, 2007.Sources of Ore-Forming Materials of the Superlarge B and Li Deposit in Zabuye Salt Lake, Xizang, China[J].Acta Geologica Sinica, 81(12): 1709-1715(in Chinese).
Google Scholar
|
|
LOWSON R T, COMARMOND M C J, RAJARATNAM G, et al., 2005.The kinetics of the dissolution of chlorite as a function of pH and at 25 ℃[J].Geochimica et Cosmochimica Acta, 69(7): 1687-1699.
Google Scholar
|
|
LUO Yangbing, ZHENG Mianping, REN Yaqiong, 2017.Metallogenic correlation of special salt lake and hydrotherm, Qinghai-Xizang Plateau, China[J].Science & Technology Review, 35(12): 44-48(in Chinese with English abstract).
Google Scholar
|
|
LÜ Yuanyuan, 2024.Variation patterns of boron and lithium isotopes in salt lakes on the Qinghai-Xizang Plateau and their application in evaluating resources in the Damxung Co salt lake[J].Journal of Geomechanics, 30(1): 107-128(in Chinese with English abstract).
Google Scholar
|
|
MACKENZIE F T, GARRELS R M, 1966.Chemical mass balance between rivers and oceans[J].American Journal of Science, 264(7): 507-525.
Google Scholar
|
|
MACKENZIE F T, KUMP L R, 1995.Reverse weathering, clay mineral formation, and oceanic element cycles[J].Science, 270(5236): 586.
Google Scholar
|
|
MARCÉ R, OBRADOR B, MORGUÍ J A, et al., 2015.Carbonate weathering as a driver of CO2 supersaturation in lakes[J].Nature Geoscience, 8: 107-111.
Google Scholar
|
|
MESSAGER M L, LEHNER B, GRILL G, et al., 2016.Estimating the volume and age of water stored in global lakes using a geo-statistical approach[J].Nature Communications, 7:13603.
Google Scholar
|
|
MICHALOPOULOS P, ALLER R C, REEDER R J, 2000.Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds[J].Geology, 28(12):1095-1098.
Google Scholar
|
|
MICHALOPOULOS P, ALLER R C, 1995.Rapid clay mineral formation in Amazon Delta sediments: Reverse weathering and oceanic elemental cycles[J].Science, 270(5236):614-617.
Google Scholar
|
|
MILLOT R, SCAILLET B, SANJUAN B, 2010.Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique(French West Indies) and experimental approach[J].Geochimica et Cosmochimica Acta, 74(6): 1852-1871.
Google Scholar
|
|
MISRA S, FROELICH P N, 2012.Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering[J].Science, 335(6070): 818-823.
Google Scholar
|
|
PAN Tong, CHEN Jianzhou, DING Chengwang, et al., 2023.Supernormal enrichment of lithium, rubidium and cesium and its development potential in the clay of Salt Lake of Qaidam Basin[J].Geology in China, 50(6): 1925-1927(in Chinese with English abstract).
Google Scholar
|
|
PISTINER J S, HENDERSON G M, 2003.Lithium-isotope fractionation during continental weathering processes[J].Earth Planetary Science Letters, 214(1-2): 327-339.
Google Scholar
|
|
POGGE VON STRANDMANN P A E, FRASER W T, HAMMOND S J, et al., 2019.Experimental determination of Li isotope behaviour during basalt weathering[J].Chemical Geology, 517: 34-43.
Google Scholar
|
|
POGGE VON STRANDMANN P A E, LIU Xianyi, LIU Chunyao, et al., 2022.Lithium isotope behaviour during basalt weathering experiments amended with organic acids[J].Geochimica et Cosmochimica Acta, 328: 37-57.
Google Scholar
|
|
RAHROMOSTAQIM M, SAHIMI M, 2019.Molecular dynamics simulation of hydration and swelling of mixed-layer clays in the presence of carbon dioxide[J].The Journal of Physical Chemistry C, 123(7): 4243-4255.
Google Scholar
|
|
RAMOS D P S, MORGAN L E, LLOYD N S, et al., 2018.Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids[J].Geochimica et Cosmochimica Acta, 236: 99-120.
Google Scholar
|
|
SULPIS O, HUMPHREYS M P, WILHELMUS M M, et al., 2022.RADIv1: A non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave[J].Geoscientific Model Development, 15(5): 2105-2131.
Google Scholar
|
|
TEPPEN B J, MILLER D M, 2006.Hydration energy determines isovalent cation exchange selectivity by clay minerals[J].Soil Science Society of America Journal, 70(1): 31-40.
Google Scholar
|
|
TOMASCAK P B, HEMMING N G, HEMMING S R, 2003.The lithium isotopic composition of waters of the Mono Basin, California[J].Geochimica et Cosmochimica Acta, 67(4): 601-611.
Google Scholar
|
|
TONG Wei, LIAO Zhijie, LIU Shibin, et al, 2000.Xizang Hot Springs[M].Beijing: Science Press(in Chinese).
Google Scholar
|
|
URBAN N R, AUER M T, GREEN S A, et al., 2005.Carbon cycling in lake superior[J].Journal of Geophysical Research(Oceans), 110: C06S90.
Google Scholar
|
|
VON DAMM K L, EDMOND J M, 1984.Reverse weathering in the closed-basin lakes of the Ethiopian Rift[J].American Journal of Science, 284(7): 835-862.
Google Scholar
|
|
WAY J T, 1852.On the power of soils to absorb manure[J].Journal of the Royal Agricultural Society of England, 13: 123-143.
Google Scholar
|
|
WEYNELL M, WIECHERT U, SCHUESSLER J A, 2017.Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Xizang Plateau[J].Geochimica et Cosmochimica Acta, 213: 155-177.
Google Scholar
|
|
WU Yaqin, ZHAO Zhiqi, 2011.Experimental study on the adsorption of Li+on kaolinite and montmorillonite[J].Acta Mineralogica Sinica, 31(2): 291-295(in Chinese with English abstract).
Google Scholar
|
|
XIAO Yingkai, QI Haiping, WANG Yunhui, et al., 1994.Lithium isotopic compositions of brine sediments and source water in Da Qaidam Lake, Qinghai, China[J].Geochimica, 23(4):329-338(in Chinese with English abstract).
Google Scholar
|
|
XU Chang, 1982.Clay minerals in salt lake sediments of the Qaidam basin[J].Acta Mineralogica Sinica, 2(3): 226-230(in Chinese with English abstract).
Google Scholar
|
|
XU Chang, 1985.Primary study of clay minerals and its significance in salt lake sediments of the Qinghai-Xizang[J].Scientia Geologica Sinica, 20(1): 87-96(in Chinese with English abstract).
Google Scholar
|
|
XU Chang, 1988.Study of clay minerals in some salt lakes of China[J].Oceanologia et Limnologia Sinica, 19(3):278-285(in Chinese with English abstract).
Google Scholar
|
|
XU Chang, 1993.Advance of Clay Minerals Research in Salt Lakes of China[M].Beijing: Science Press(in Chinese).
Google Scholar
|
|
XUE Fei, TAN Hongbing, ZHANG Xiying, et al., 2024.Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Xizang Plateau[J].Geoscience Frontiers, 15(2): 101768.
Google Scholar
|
|
YAN Lijuan, ZHENG Mianping, 2015.The response of lake variations to climate change in the past forty years: A case study of the northeastern Xizang Plateau and adjacent areas, China[J].Quaternary International, 371: 31-48.
Google Scholar
|
|
YANG Shouye, JIA Qi, XU Xinning, et al., 2023.Submarine reverse weathering and its effect on oceanic elements cycling[J].Marine Geology & Quaternary Geology, 43(3):26-34(in Chinese with English abstract).
Google Scholar
|
|
YAO Peng, ZHAO Bin, BIANCHI T S, et al., 2014.Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf:Implications for carbon preservation and authigenic mineral formation[J].Continental Shelf Research, 91: 1-11.
Google Scholar
|
|
YOU Chenfeng, CHAN L H, GIESKES J M, et al., 2003.Seawater intrusion through the oceanic crust and carbonate sediment in the Equatorial Pacific: Lithium abundance and isotopic evidence[J].Geophysical Research Letters, 30(21): 2120.
Google Scholar
|
|
YU Junqing, HONG Rongchang, GAO Chunliang, et al., 2018.Lithiunm brine deposits in Qaidam Basin: Constraints on formation processes and distribution pattern[J].Journal of Salt Lake Research, 26(1): 7-14(in Chinese with English abstract).
Google Scholar
|
|
YURETICH R F, CERLING T E, 1983.Hydrogeochemistry of Lake Turkana, Kenya: Mass balance and mineral reactions in an alkaline lake[J].Geochimica et Cosmochimica Acta, 47(6):1099-1109.
Google Scholar
|
|
ZHANG Libo, CHAN L H, GIESKES J M, 1998.Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin[J].Geochimica et Cosmochimica Acta, 62(14): 2437-2450.
Google Scholar
|
|
ZHANG X Y, GAILLARDET J, BARRIER L, et al., 2022.Li and Si isotopes reveal authigenic clay formation in a palaeo-delta[J].Earth and Planetary Science Letters, 578:117339.
Google Scholar
|
|
ZHANG X Y, SALDI G D, SCHOTT J, et al., 2021.Experimental constraints on Li isotope fractionation during the interaction between kaolinite and seawater[J].Geochimica et Cosmochimica Acta, 292: 333-347.
Google Scholar
|
|
ZHAO Bin, YAO Peng, YANG Zuosheng, et al., 2018.Reverse weathering in river-dominated marginal seas[J].Advances in Earth Science, 33(1): 42-51(in Chinese with English abstract).
Google Scholar
|
|
ZHAO Yue, MA Wanping, YANG Yang, et al., 2022.Experimental study on the adsorption of Li+ by clay minerals-implications for the mineralization of clay-type lithium deposit[J].Acta Mineralogica Sinica, 42(2): 141-153(in Chinese with English abstract).
Google Scholar
|
|
ZHENG Mianping, LIU Wengao, 1987.Zabuyelite, a new lithium mineral[J].Geological Review, 33(4): 365-368(in Chinese with English abstract).
Google Scholar
|
|
ZHENG Mianping, XIANG Jun, WEI Xinjun, 1989.Saline lakes on the qinghai-xizang plateau[M].Beijing: Science Press(in Chinese).
Google Scholar
|
|
ZHENG Mianping, XING Enyuan, ZHANG Xuefei, et al., 2023.Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits[J].Geology in China, 50(6): 1599-1620(in Chinese with English abstract).
Google Scholar
|
|
ZHENG Mianping, ZHANG Yongsheng, LIU Xifang, et al., 2016.Progress and Prospects of Salt Lake Research in China[J].Acta Geologica Sinica, 90(9): 2123-2166(in Chinese with English abstract).
Google Scholar
|
|
ZHENG Mianping, 2001a.On saline lakes of China[J].Mineral Deposits, 20(2): 181-189, 128(in Chinese with English abstract).
Google Scholar
|
|
ZHENG Mianping, 2001b.Study Advances in Saline Lake Resources on the Qinghai-Xizang Pleteau[J].Acta Geoscientia Sinica, 22(2): 97-102(in Chinese with English abstract).
Google Scholar
|
|
ZHENG Mianping, 2010.Salt Lake Resources and Eco-environment in China[J].Acta Geologica Sinica, 84(11):1613-1622(in Chinese with English abstract).
Google Scholar
|
|
ZHENG Xiyu, TANG Yuan, XU Chang, et al., 1988.Xizang Salt Lakes[M].Beijing: Science Press(in Chinese).
Google Scholar
|