2024 Vol. 45, No. 5
Article Contents

HAN Wenxia, FANG Xiaomin, ZHANG Tao. 2024. New Model for Orbital Forcing Salt Formation in the Qaidam Basin. Acta Geoscientica Sinica, 45(5): 715-727. doi: 10.3975/cagsb.2024.070801
Citation: HAN Wenxia, FANG Xiaomin, ZHANG Tao. 2024. New Model for Orbital Forcing Salt Formation in the Qaidam Basin. Acta Geoscientica Sinica, 45(5): 715-727. doi: 10.3975/cagsb.2024.070801

New Model for Orbital Forcing Salt Formation in the Qaidam Basin

  • The formation of salt resources is controlled by three key factors: sedimentary basins, arid climates, and source material replenishment.Previous studies have mainly focused on the notable roles of tectonic activity and the sedimentary environment in the salt-forming process while neglecting the key factors of arid and extremely arid climate events and their coupling mechanisms in the formation of salt layers in basins.This study reconstructed the hydroclimatic evolutionary history of the Qaidam Basin based on a multidisciplinary analysis, including rock magnetism, environmental magnetism, elemental and isotopic geochemistry, and palynological studies on a deep drilling core in the Chahanslta Depression of the western Qaidam Basin.The salt formation process and related mechanisms were further investigated based on a comprehensive analysis of published and newly obtained data from the SG-1 core by tracing the temporal and frequency domain evolution patterns and the system dynamics evolution characteristics of these data.The results reveal four key periods of salt layer development in the western Qaidam Basin since 2.7 Ma, specifically during 2.2–1.95 Ma, 1.3–1.1 Ma, 0.85–0.65 Ma, and 0.5–0.3 Ma.We suggest that reduced seasonality and increased meridional moisture transport, promoted by the co-occurrence of low obliquity amplitudes and low eccentricity, would have facilitated the ice sheet expansion in the Northern Hemisphere.This would have subsequently affected the climate and hydrological cycle of Qaidam Basin by regulating the position and intensity of the Northern Hemisphere westerlies, controlling the occurrence of arid events and the development of salt layers within the basin.Further comparative analysis confirmed that on orbital-suborbital-millennial scales, global ice volume and climate change in the high latitudes of the Northern Hemisphere notably control the arid climate and salt layer development in the Qaidam Basin.This orbital parameter controlling the arid climate evolution and the salt-forming process has been shown to be applicable throughout the entire basin.This leads to the development of salt layers in different depressions of the Qaidam Basin, despite bearing some differences, the development of their major salt layer predominantly concentrated in the aforementioned four key periods.These research findings offer novel theoretical insights and methodological approaches for understanding the processes and mechanisms underlying salt formation in the Qaidam Basin and other arid areas.Furthermore, these findings provide a remarkable foundation for future studies that will explore the interplay between tectonic, climatic, and source material variations to delineate the diverse types and patterns of salt resource development across various regions as well as unravel the deep-time evolution of these salt resources.
  • 加载中
  • 陈克造, BOWLER J M, 1985.柴达木盆地察尔汗盐湖沉积特征及其古气候演化的初步研究[J].中国科学(B 辑), 15(5):463-473.

    Google Scholar

    陈克造, 杨绍修, 郑喜玉, 1981.青藏高原的盐湖[J].地理学报, 36(1): 13-21.

    Google Scholar

    黄汉纯, 黄庆华, 马寅生, 等, 1996.柴达木盆地地质与油气预测: 立体地质·三维应力·聚油模式[M].北京: 地质出版社:1-357.

    Google Scholar

    黄麒, 韩凤清, 2007.柴达木盆地盐湖演化与古气候波动[M].北京: 科学出版社: 1-209.

    Google Scholar

    刘成林, 王弥力, 陈永志, 等, 1996.柴达木盆地西部盐类矿床形成机理-反向湖链模式[M]//郑绵平, 盐湖资源环境与全球变化.北京: 地质出版社.

    Google Scholar

    刘成林, 赵艳军, 方小敏, 等, 2015.板块构造对海相钾盐矿床分布与成矿模式的控制[J].地质学报, 89(11): 1893-1907.

    Google Scholar

    袁见齐, 霍承禹, 蔡克勤, 1983.高山深盆的成盐环境--一种新的成盐模式的剖析[J].地质论评, 29(2): 159-165.

    Google Scholar

    袁见齐, 杨谦, 孙大鹏, 等, 1995.察尔汗盐湖钾盐矿床的形成条件[M].北京: 地质出版社: 1-216.

    Google Scholar

    张彭熹, 1987.柴达木盆地盐湖[M].北京: 科学出版社: 1-235.

    Google Scholar

    张彭熹, 张保珍, LOWENSTEIN T K, 等, 1993.古代异常钾盐蒸发岩的成因: 以柴达木盆地察尔汗盐湖钾盐的形成为例[M].北京: 科学出版社: 1-140.

    Google Scholar

    张彭熹, 张保珍, 唐渊, 等, 1999.中国盐湖自然资源及其开发利用[M].北京: 科学出版社: 1-325.

    Google Scholar

    郑绵平, 张永生, 刘喜方, 等, 2016.中国盐湖科学技术研究的若干进展与展望[J].地质学报, 90(9): 2123-2166.

    Google Scholar

    周厚云, 2004.最近135 ka 甜水海碳酸盐元素指标变化与湖泊环境演化[D].广州: 中国科学院广州地球化学研究所.

    Google Scholar

    ALLEY R B, 2004.GISP2 Ice Core Temperature and Accumulation Data.IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2004-013[DB].NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.

    Google Scholar

    BATCHELOR C L, MARGOLD M, KRAPP M, et al., 2019.The configuration of Northern Hemisphere ice sheets through the Quaternary[J].Nature Communications, 10(1): 3713.

    Google Scholar

    BOND G, KROMER B, BEER J, et al., 2001.Persistent solar influence on North Atlantic climate during the Holocene[J].Science, 294(5549): 2130-2136.

    Google Scholar

    BOULILA S, GALBRUN B, MILLER K G, et al., 2011.On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences[J].Earth-Science Reviews, 109(3-4): 94-112.

    Google Scholar

    CAI Maotang, FANG Xiaomin, WU Fuli, et al., 2012.Pliocene–Pleistocene stepwise drying of Central Asia:Evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Xizang Plateau[J].Global and Planetary Change, 94: 72-81.

    Google Scholar

    CHENG Kezhao, BOWLER J M, 1985.Preliminary study on sedimentary characteristics and evolution of paleoclimate of Qarhan salt lake in Qaidam basin[J].Science in China Series B, 15(5): 463-473(in Chinese).

    Google Scholar

    CHENG Kezhao, YANG Zhaoxiu, ZHENG Xiui, 1981.The Salt Lakes on the Qinghai-Xizang plateau[J].Acta Geographica Sinica, 36(1): 13-21(in Chinese with English abstract).

    Google Scholar

    CLARK P U, ARCHER D, POLLARD D, et al., 2006.The Middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2[J].Quaternary Science Reviews, 25(23-24): 3150-3184.

    Google Scholar

    CURIO J, MAUSSION F, SCHERER D, 2015.A 12-year high-resolution climatology of atmospheric water transport over the Xizang Plateau[J].Earth System Dynamics, 6(1):109-124.

    Google Scholar

    DE BOER B, LOURENS L J, VAN DE WAL R S W, 2014.Persistent 400, 000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene[J].Nature Communications, 5: 2999.

    Google Scholar

    DECONTO R M, POLLARD D, WILSON P A, et al., 2008.Thresholds for Cenozoic bipolar glaciation[J].Nature, 455(7213): 652-656.

    Google Scholar

    DONGES J F, DONNER R V, MARWAN N, et al., 2015.Non-linear regime shifts in Holocene Asian monsoon variability: Potential impacts on cultural change and migratory patterns[J].Climate of the Past, 11(5): 709-741.

    Google Scholar

    DONGES J F, DONNER R V, TRAUTH M H, et al., 2011.Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution[J].Proceedings of the National Academy of Sciences of the United States of America, 108(51): 20422-20427.

    Google Scholar

    DONNER R V, SMALL M, DONGES J F, et al., 2011.Recurrence-based time series analysis by means of complex network methods[J].International Journal of Bifurcation and Chaos, 21(4): 1019-1046.

    Google Scholar

    ELDERFIELD H, FERRETTI P, GREAVES M, et al., 2012.Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition[J].Science, 337(6095):704-709.

    Google Scholar

    EROGLU D, MCROBIE F H, OZKEN I, et al., 2016.See-saw relationship of the Holocene East Asian-Australian summer monsoon[J].Nature Communications, 7: 12929.

    Google Scholar

    FANG Xiaomin, AN Zhisheng, CLEMENS S C, et al., 2020.The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling[J].Proceedings of the National Academy of Sciences of the United States of America, 117(40): 24729-24734.

    Google Scholar

    FANG Xiaomin, ZHANG Weilin, MENG Qingquan, et al., 2007.High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Xizang Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Xizang Plateau[J].Earth and Planetary Science Letters, 258(1-2): 293-306.

    Google Scholar

    GAO Peng, NIE Junsheng, YAN Qing, et al., 2021.Millennial resolution late Miocene Northern China precipitation record spanning astronomical analogue interval to the future[J].Geophysical Research Letters, 48(15): e93942.

    Google Scholar

    GUO Pei, LIU Chiyang, HUANG Lei, et al., 2018.Palaeohydrological evolution of the late Cenozoic saline lake in the Qaidam Basin, NE Xizang Plateau: Tectonic vs.climatic control[J].Global and Planetary Change, 165: 44-61.

    Google Scholar

    GUO Zhengtang, PENG Shuzhen, HAO Qingzhen, et al., 2004.Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in Northern China[J].Global and Planetary Change, 41(3-4): 135-145.

    Google Scholar

    GUO Zhengtang, RUDDIMAN W F, HAO Qingzhen, et al., 2002.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature, 416(6877): 159-163.

    Google Scholar

    HAN Wenxia, APPEL E, GALY A, et al., 2020.Climate transition in the Asia inland at 0.8-0.6 Ma related to astronomically forced ice sheet expansion[J].Quaternary Science Reviews, 248: 106580.

    Google Scholar

    HAN Wenxia, FANG Xiaomin, YE Chengcheng, et al., 2014b.Xizang forcing Quaternary stepwise enhancement of westerly jet and central Asian aridification: Carbonate isotope records from deep drilling in the Qaidam salt playa, NE Xizang[J].Global and Planetary Change, 116: 68-75.

    Google Scholar

    HAN Wenxia, LÜ Shuang, APPEL E, et al., 2019.Dust storm outbreak in central Asia after-3.5 kyr BP[J].Geophysical Research Letters, 46(13): 7624-7633.

    Google Scholar

    HAN Wenxia, MA Zhibang, LAI Zhongping, et al., 2014a.Wind erosion on the north-eastern Xizang Plateau: constraints from OSL and U-Th dating of playa salt crust in the Qaidam Basin[J].Earth Surface Processes and Landforms, 39(6):779-789.

    Google Scholar

    HERB C, APPEL E, VOIGT S, et al., 2015.Orbitally tuned age model for the late Pliocene–Pleistocene lacustrine succession of drill core SG-1 from the western Qaidam Basin (NE Xizang Plateau)[J].Geophysical Journal International, 200(1):35-51.

    Google Scholar

    HOLBOURN A E, KUHNT W, CLEMENS S C, et al., 2018.Late Miocene climate cooling and intensification of Southeast Asian winter monsoon[J].Nature Communications, 9(1):1584.

    Google Scholar

    HUANG Hanchun, HUANG Qinghua, MA Yinsheng, et al., 1996.Geology and Hydrocarbon Prediction in Qaidam Basin:Three-Dimensional Geology, Three-Dimensional Stress and Oil Accumulation Model[M].Beijing: Geological Publishing House: 1-357(in Chinese).

    Google Scholar

    HUANG Qi, HAN Fengqing, 2007.Evolution of salt lakes and palaeoclimate fluctuations in Qaidam Basin[M].Beijing:Science Press: 1-209(in Chinese).

    Google Scholar

    HUYBERS P, WUNSCH C, 2005.Obliquity pacing of the late Pleistocene glacial terminations[J].Nature, 434: 491-494.

    Google Scholar

    HӦNISCH B, HEMMING N G, ARCHER D, et al., 2009.Atmospheric carbon dioxide concentration across the mid-Pleistocene transition[J].Science, 324(5934): 1551-1554.

    Google Scholar

    JIANG Hanchao, JI Junliang, GAO Ling, et al., 2008.Cooling-driven climate change at 12-11 Ma: Multiproxy records from a long fluviolacustrine sequence at Guyuan, Ningxia, China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1-2): 148-158.

    Google Scholar

    LENG M J, MARSHALL J D, 2004.Palaeoclimate interpretation of stable isotope data from lake sediment archives[J].Quaternary Science Reviews, 23(7-8): 811-831.

    Google Scholar

    LI J X, YUE L P, ROBERTS A P, et al., 2018.Global cooling and enhanced Eocene Asian mid-latitude interior aridity[J].Nature Communications, 9(1): 3026.

    Google Scholar

    LI Minghui, FANG Xiaomin, WANG Jiuyi, et al., 2013.Evaporite minerals of the lower 538.5 m sediments in a long core from the Western Qaidam Basin, Xizang[J].Quaternary International, 298: 123-133.

    Google Scholar

    LI Minghui, FANG Xiaomin, YI Chaolu, et al., 2010.Evaporite minerals and geochemistry of the upper 400 m sediments in a core from the Western Qaidam Basin, Xizang[J].Quaternary International, 218(1-2): 176-189.

    Google Scholar

    LISIECKI L E, RAYMO M E, 2005.A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J].Paleoceanography, 20(1): PA1003.

    Google Scholar

    LIU Chenglin, JIAO Pengcheng, LÜ Fenglin, et al., 2015.The impact of the linked factors of provenance, tectonics and climate on potash formation: An example from the potash deposits of lop nur depression in Tarim Basin, Xinjiang, Western China[J].Acta Geologica Sinica, 89(6): 2030-2047.

    Google Scholar

    LIU Chenglin, WANG Mili, CHEN Yongzhi, et al., 1996.Formation mechanism of salt deposits in the western Qaidam Basin-reverse lacustrine chain model[M]//ZHENG Mianping, Salt lake resources and environment and global changes.Beijing: Geology Press(in Chinese).

    Google Scholar

    LIU Chenglin, ZHAO Yanjun, FANG Xiaomin, et al., 2015.Plate tectonics control on the distribution and formation of the marine potash deposits[J].Acta Geologica Sinica, 89(11):1893-1907(in Chinese with English abstract).

    Google Scholar

    LOURENS L J, HILGEN F J, 1997.Long-periodic variations in the Earth’s obliquity and their relation to third-order eustatic cycles and late Neogene glaciations[J].Quaternary International, 40: 43-52.

    Google Scholar

    LOUTRE M F, PAILLARD D, VIMEUX F, et al., 2004.Does mean annual insolation have the potential to change the climate?[J].Earth and Planetary Science Letters, 221(1-4): 1-14.

    Google Scholar

    LU Huayu, WANG Xianyan, LI Langpin, 2010.Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia[J].Geological Society, London, Special Publication, 342: 29-44.

    Google Scholar

    LӦFVERSTRӦM M, CABALLERO R, NILSSON J, et al., 2016.Stationary Wave Reflection as a Mechanism for Zonalizing the Atlantic Winter Jet at the LGM[J].Journal of the Atmospheric Sciences, 73: 3329-3342.

    Google Scholar

    MARWAN N, CARMEN ROMANO M, THIEL M, et al., 2007.Recurrence plots for the analysis of complex systems[J].Physics Reports, 438(5-6): 237-329.

    Google Scholar

    MARWAN N, EROGLU D, OZKEN I, et al., 2018.Regime Change Detection in Irregularly Sampled Time Series[M]//Advances in Nonlinear Geosciences.Springer:357-368.

    Google Scholar

    MARWAN N, SCHINKEL S, KURTHS J, 2013.Recurrence plots 25 years later–Gaining confidence in dynamical transitions[J].Europhysics Letters, 101(2): 20007.

    Google Scholar

    MCCLYMONT E L, ROSELL-MELÉ A, 2005.Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition[J].Geology, 33(5): 389-392.

    Google Scholar

    MIAO Yunfa, FANG Xiaomin, HERRMANN M, et al., 2011.Miocene pollen record of KC-1 core in the Qaidam Basin, NE Xizang Plateau and implications for evolution of the East Asian monsoon[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1-2): 30-38.

    Google Scholar

    NIE Junsheng, GARZIONE C, SU Qingda, et al., 2017.Dominant 100, 000-year precipitation cyclicity in a late Miocene Lake from northeast Xizang[J].Science Advances, 3(3): e1600762.

    Google Scholar

    PÄLIKE H, NORRIS R D, HERRLE J O, et al., 2006.The heartbeat of the oligocene climate system[J].Science, 314(5807): 1894-1898.

    Google Scholar

    PHILANDER S G, FEDOROV A V, 2003.Role of tropics in changing the response to Milankovich forcing some three million years ago[J].Paleoceanography, 18(2): 1045.

    Google Scholar

    QIANG Xiaoke, AN Zhisheng, SONG Yougui, et al., 2011.New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago[J].Science China Earth Sciences, 54(1): 136-144.

    Google Scholar

    RAYMO M E, 1997.The timing of major climate terminations[J].Paleoceanography, 12(4): 577-585.

    Google Scholar

    RAYMO M E, NISANCIOGLU K H, 2003.The 41 kyr world:Milankovitch's other unsolved mystery[J].Paleoceanography, 18(1): 1011.

    Google Scholar

    SCHERER D, 2020.Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates[J].Hydrology and Earth System Sciences, 24(7):3835-3850.

    Google Scholar

    SONG Bowen, YANG Yibo, YANG Rongsheng, et al., 2020.Miocene 87Sr/86Sr ratios of ostracods in the northern Qaidam Basin, NE Xizang Plateau, and links with regional provenance, weathering and eolian input[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109775.

    Google Scholar

    SONG Chunhui, HU Sihu, HAN Wenxia, et al., 2014.Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Xizang Plateau[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 395: 67-76.

    Google Scholar

    SU Qingda, NIE Junsheng, LUO Zeng, et al., 2019.Detection of strong precession cycles from the late Pliocene sedimentary records of northeastern Xizang Plateau[J].Geochemistry, Geophysics, Geosystems, 20(8): 3901-3912.

    Google Scholar

    SUN Jimin, WINDLEY B F, 2015.Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J].Geology, 43(11): 1015-1018.

    Google Scholar

    TALBOT M R, KELTS K, 1990.Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments[M]//Lacustrine Basin Exploration: Case Studies and Modern Analogs.American Association of Petroleum Geologists: 99-112.

    Google Scholar

    TANG Zihua, DING Zhongli, WHITE P D, et al., 2011.Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan[J].Earth and Planetary Science Letters, 302(3-4): 439-447.

    Google Scholar

    TORRENCE C, COMPO G P, 1998.A practical guide to wavelet analysis[J].Bulletin of the American Meteorological Society, 79(1), 61-78.

    Google Scholar

    VAN DAM J A, AZIZ H A, ÁLVAREZ SIERRA M A, et al., 2006.Long-period astronomical forcing of mammal turnover[J].Nature, 433(7112): 687-691.

    Google Scholar

    WANG Jiuyi, FANG Xiaomin, APPEL E, et al., 2012.Pliocene-Pleistocene climate change at the NE Xizang Plateau deduced from lithofacies variation in the drill core SG-1, western Qaidam Basin[J].Journal of Sedimentary Research, 82(11-12): 933-952.

    Google Scholar

    WANG Jiuyi, FANG Xiaomin, APPEL E, et al., 2013.Magnetostratigraphic and radiometric constraints on salt formation in the Qaidam Basin, NE Xizang Plateau[J].Quaternary Science Reviews, 78: 53-64.

    Google Scholar

    WANG Na, JIANG Dabang, LANG Xianmei, 2018.Northern westerlies during the last glacial maximum: Results from CMIP5 simulations[J].Journal of Climate, 31(3): 1135-1153.

    Google Scholar

    WANG Zhixiang, HUANG Chunju, KEMP D B, et al., 2021.Distinct responses of late Miocene eolian and lacustrine systems to astronomical forcing in NE Xizang[J].Geological Society of America Bulletin, 133(11-12): 2266-2278.

    Google Scholar

    WANG Zhixiang, HUANG Chunju, LICHT A, et al., 2019.Middle to late Miocene eccentricity forcing on lake expansion in NE Xizang[J].Geophysical Research Letters, 46(12): 6926-6935.

    Google Scholar

    WARREN J K, 2010.Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J].Earth-Science Reviews, 98(3-4): 217-268.

    Google Scholar

    XIA Wenchen, ZHANG Ning, YUAN Xiaoping, et al., 2001.Cenozoic Qaidam basin, China: A stronger tectonic inversed, extensional rifted basin[J].AAPG Bulletin, 85(4): 715-736.

    Google Scholar

    XU Xiangde, LU Chungu, SHI Xiaohui, et al., 2008.World water tower: An atmospheric perspective[J].Geophysical Research Letters, 35(20): L20815.

    Google Scholar

    YANG Yibo, FANG Xiaomin, GALY A, et al., 2013.Quaternary paleolake nutrient evolution and climatic change in the western Qaidam Basin deduced from phosphorus geochemistry record of deep drilling core SG-1[J].Quaternary International, 313-314: 156-167.

    Google Scholar

    YANG Yibo, FANG Xiaomin, KOUTSODENDRIS A, et al., 2016.Exploring Quaternary paleolake evolution and climate change in the western Qaidam Basin based on the bulk carbonate geochemistry of lake sediments[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 446: 152-161.

    Google Scholar

    YANG Yibo, YANG Rongsheng, LI Xiangyu, et al., 2017.Glacial-interglacial climate change on the northeastern Xizang Plateau over the last 600 kyr[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 476: 181-191.

    Google Scholar

    YUAN Jianqi, HUO Chengyu, CAI Keqin, 1983.The High Mountain–Deep Basin Saline Environment–A New Genetic Model of Salt Deposits[J].Geological Review, 29(2):159-165(in Chinese with English abstract).

    Google Scholar

    YUAN Jianqi, WANG Wenda, LIU Xunjian, et al., 1995.The formation conditions of Potash deposits in Qarhan salt lake[M].Beijing: Geological Publishing House: 1-216(in Chinese).

    Google Scholar

    ZACHOS J C, PAGANI M, SLOAN L, et al., 2001a.Trends, rhythms, and aberrations in global climate 65 Ma to present[J].Science, 292(5517): 686-693.

    Google Scholar

    ZACHOS J C, SHACKLETON N J, REVENAUGH J S, et al., 2001b.Climate response to orbital forcing across the Oligocene-Miocene boundary[J].Science, 292(5515):274-278.

    Google Scholar

    ZHANG Pengxi, 1987.The salt lakes in Qaidam Basin[M].Beijing:Science Press: 1-235(in Chinese).

    Google Scholar

    ZHANG Pengxi, ZHANG Baozhen, LOWENSTEIN T K, et al., 1993.Origin of ancient anomalous potash evaporites: Take the formation of potash deposites in Qarhan salt lake in Qaidam Basin[M].Beijing: Science Press: 1-140(in Chinese).

    Google Scholar

    ZHANG Pengxi, ZHANG Baozhen, TANG Yuan, et al., 1999.Natural resources of salt lakes in China and their development and utilization[M].Beijing: Science Press: 1-325(in Chinese).

    Google Scholar

    ZHANG Rong, DELWORTH T L, 2005.Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J].Journal of Climate, 18(12):1853-1860.

    Google Scholar

    ZHANG Weilin, APPEL E, FANG Xiaomin, et al., 2012a.Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Xizang Plateau) and its tectonic implications[J].Quaternary Research, 78(1): 139-148.

    Google Scholar

    ZHANG Weilin, APPEL E, FANG Xiaomin, et al., 2012b.Paleoclimatic implications of magnetic susceptibility in Late Pliocene–Quaternary sediments from deep drilling core SG-1 in the western Qaidam Basin (NE Xizang Plateau)[J].Journal of Geophysical Research, 117: B06101.

    Google Scholar

    ZHENG Mianping, ZHANG Yongsheng, LIU Xifang, et al., 2016.Progress and prospects of salt lake research in China[J].Acta Geologica Sinica, 90(9): 2123-2166(in Chinese with English abstract).

    Google Scholar

    ZHOU Houyun, 2004.Elemental Geochemistry of Carbonate Cement from Core TS95 and Environmental Evolution of Lake Tianshuihai since 135 ka B.P[D].Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences(in Chinese with English abstract).

    Google Scholar

    ZHUANG Guangsheng, HOURIGAN J K, KOCH P L, et al., 2011.Isotopic constraints on intensified aridity in Central Asia around 12 Ma[J].Earth and Planetary Science Letters, 312:152-163.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(77) PDF downloads(16) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint