2024 Vol. 45, No. 4
Article Contents

WANG Jiasheng, FU Hao, HOU Defa, WANG Yongrui, LI Haiming, ZHAO Jianhua. 2024. The “Two-story Binary Metallogenic Model” for Pure Stibnite Deposits in the South China Antimony Ore Belt: A Case Study of the Muli Antimony Deposit in Southeastern Yunnan Province. Acta Geoscientica Sinica, 45(4): 502-514. doi: 10.3975/cagsb.2024.022601
Citation: WANG Jiasheng, FU Hao, HOU Defa, WANG Yongrui, LI Haiming, ZHAO Jianhua. 2024. The “Two-story Binary Metallogenic Model” for Pure Stibnite Deposits in the South China Antimony Ore Belt: A Case Study of the Muli Antimony Deposit in Southeastern Yunnan Province. Acta Geoscientica Sinica, 45(4): 502-514. doi: 10.3975/cagsb.2024.022601

The “Two-story Binary Metallogenic Model” for Pure Stibnite Deposits in the South China Antimony Ore Belt: A Case Study of the Muli Antimony Deposit in Southeastern Yunnan Province

  • The South China antimony ore belt, which is composed of lots of large-super large pure stibnite deposits, is the most important antimony metallogenic belt in China and even in the world.In this study, the Muli antimony deposit in southeastern Yunnan province, was taken as a main research object, through the detailed comparative study of basic geological characteristics with the typical Xikuangshan and Dushan antimony ore fields (deposits) in the South China antimony ore belt.We can find that no matter in ore field or deposit scale for the pure stibnite ore field (deposit), two types of ore may occur, “quartz-stibnite” and “calcite-stibnite”.In the same ore field, some deposits (sections) show “quartz-stibnite” mineral assemblage, while some show“calcite-stibnite” mineral assemblage.On the other hand, the “quartz-stibnite” mineral assemblage usually located in the upper part, and “calcite-stibnite” mineral assemblage located in the lower part when they contemporaneously exist in one deposit.Such model is first named as “two-story binary metallogenic model” in this paper, which is of great significance for the study of genesis and prospecting of pure stibnite deposits in South China antimony ore belt.
  • 加载中
  • 崔银亮, 金世昌, 王学焜, 1995.贵州独山地区锑矿成矿条件及找矿标志[J].地质与勘探, 31(3): 24-30.

    Google Scholar

    崔银亮, 王学琨, 金世昌, 1993.独山锑矿床控矿条件与矿化富集规律[J].西南矿产地质, (4): 18-25.

    Google Scholar

    刁理品, 汪忠贵, 吴帮继, 等, 2017.贵州独山锑矿集区多元示矿信息分析与找矿靶区优选[J].中国地质, 44(4): 793-809.

    Google Scholar

    何明跃, 楼亚儿, 王濮, 2002.湖南锡矿山锑矿床硅化作用与锑矿化关系[J].矿床地质, 21(S1): 384-387.

    Google Scholar

    胡阿香, 文静, 彭建堂, 2023.湘中锡矿山锑矿床方解石稀土元素地球化学及其找矿指示意义[J].矿物学报, 43(1): 38-48.

    Google Scholar

    胡瑞忠, 彭建堂, 马东升, 等, 2007.扬子地块西南缘大面积低温成矿时代[J].矿床地质, 26(6): 583-596.

    Google Scholar

    胡雄伟, 1995.湖南锡矿山超大型锑矿床成矿地质背景及矿床成因[D].北京: 中国地质科学院.

    Google Scholar

    梁婷, 王登红, 李华芹, 等, 2011.广西大厂石榴石REE 含量及Sm-Nd 同位素定年[J].西北大学学报(自然科学版), 41(4):676-681.

    Google Scholar

    刘秀, 杜萌, 2019.湖南省稻草湾锑矿矿床成因及找矿前景分析[J].南方金属, (1): 28-32.

    Google Scholar

    马跃华, 2022.滇东南木利锑矿床成矿与岩浆作用的关系[D].昆明: 昆明理工大学.

    Google Scholar

    毛景文, 杨宗喜, 谢桂青, 等, 2019.关键矿产--国际动向与思考[J].矿床地质, 38(4): 689-698.

    Google Scholar

    潘金权, 孙俊, 沈维佳, 等, 2017a.黔南独山锑矿田找矿突破思路及找矿模型[J].地质科技情报, 36(5): 181-186.

    Google Scholar

    潘金权, 伍登浩, 2017b.黔南独山与黔西南晴隆锑矿田成矿流体与物质来源对比研究[J].地质科技情报, 36(4): 123-132.

    Google Scholar

    彭建堂, 胡瑞忠, 赵军红, 等, 2003.湘西沃溪Au-Sb-W 矿床中白钨矿Sm-Nd 和石英 Ar-Ar 定年[J].科学通报, 48(18):1976-1981.

    Google Scholar

    彭建堂, 胡瑞忠, 赵军红, 等, 2002.锡矿山锑矿床热液方解石的Sm-Nd 同位素定年[J].科学通报, (10): 789-792.

    Google Scholar

    王登红, 2019.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报, 93(6):1189-1209.

    Google Scholar

    王林江, 满昆良, 1994.广南木利锑矿控矿地质条件分析[J].云南地质, 13(2): 133-138.

    Google Scholar

    王岩, 王登红, 王永磊, 等, 2021.基于地质大数据的中国锑矿空间分布规律定量研究[J].中国地质, 48(1): 52-67.

    Google Scholar

    王永磊, 陈毓川, 王登红, 等, 2012.湖南渣滓溪W-Sb矿床白钨矿 Sm-Nd 测年及其地质意义[J].中国地质, 39(5):1339-1344.

    Google Scholar

    韦文灼, 1993.马雄锑矿床地质特征[J].西南矿产地质, (2):8-16.

    Google Scholar

    肖宪国, 2014.贵州半坡锑矿床年代学、地球化学及成因[D].昆明: 昆明理工大学.

    Google Scholar

    徐军伟, 宋祥法, 赖健清, 等, 2022.湘中锡矿山矿田稻草湾锑矿床的发现及地质意义[J].矿产勘查, 13(10): 1444-1454.

    Google Scholar

    杨照柱, 马东升, 解庆林, 1998.锡矿山超大型锑矿床流体成矿作用及矿床成因[J].地质找矿论丛, 13(3): 49-60.

    Google Scholar

    郑明泓, 蔡国盛, 陈兴龙, 等, 2021.贵州独山锑矿田石英Rb-Sr定年及矿床地球化学研究[J].矿物岩石地球化学通报, 40(1): 215-227.

    Google Scholar

    周艳晶, 李建武, 王高尚, 等, 2014.全球锑矿资源分布及开发现状[J].中国矿业, 23(10): 13-16.

    Google Scholar

    祝亚男, 彭建堂, 邢朗彰, 等, 2023.湘西沃溪金锑钨矿床白钨矿、黑钨矿与磷灰石U-Pb 定年及其地质意义[J].岩石学报, 39(6): 1829-1846.

    Google Scholar

    CHEN Jun, HUANG Zhilong, YANG Ruidong, et al., 2021.Gold and antimony metallogenic relations and ore-forming process of Qinglong Sb(Au) deposit in Youjiang basin, SW China:Sulfide trace elements and sulfur isotopes[J].Geoscience Frontiers, 12(2): 605-623.

    Google Scholar

    CUI Yinliang, JIN Shichang, WANG Xuekun, 1995.Metallogenic Conditions and Prospecting Criteria of Sb Deposit in Dushan Area of Guizhou[J].Geology and Exploration, 31(3): 24-30(in Chinese with English abstract).

    Google Scholar

    CUI Yinliang, WANG Xuekun, JIN Shichang, 1993.Ore-controlling conditions and mineralization enrichment regularity of Dushan antimony deposit[J].Southwest Mineral Resources and Geology, (4): 18-25(in Chinese).

    Google Scholar

    DAI Junfeng, XU Deru, CHI Guoxiang, et al., 2022.Origin of the Woxi orogenic Au-Sb-W deposit in the West Jiangnan Orogen of South China: Constraints from apatite and wolframite U-Pb dating and pyrite in-situ S-Pb isotopic signatures[J].Ore Geology Reviews, 150: 105134.

    Google Scholar

    DIAO Lipin, WANG Zhonggui, WU Bangji, et al., 2017.Information analysis and optimization of ore targets in the Dushan antimony ore concentration area, Guizhou Province[J].Geology in China, 44(4): 793-809(in Chinese with English abstract).

    Google Scholar

    DING Jianhua, ZHANG Yong, MA Yubo, et al., 2021.Metallogenic characteristics and resource potential of antimony in China[J].Journal of Geochemical Exploration, 230: 106834.

    Google Scholar

    FU Shanling, HU Ruizhong, YAN Jun, et al., 2019.The mineralization age of the Banxi Sb deposit in Xiangzhong metallogenic province in southern China[J].Ore Geology Reviews, 112: 103033.

    Google Scholar

    FU Shanling, WANG Tianxiang, YAN Jun, et al., 2022.Formation of the Banxi Sb deposit in Eastern Yangtze Block: Evidence from individual fluid inclusion analyses, trace element chemistry, and He-Ar-S isotopes[J].Ore Geology Reviews, 146: 104949.

    Google Scholar

    GANEYEV I G, 1985.A physicochemicalmodel of the transport of mineral material by hydrothermal solutions[J].International Geology Review, 27(2): 129-143.

    Google Scholar

    HAN Zhenchun, WANG Jiasheng, LI Chao, et al., 2019.REE geochemistry of gangue minerals and their geological significance in the Muli antimony ore deposit in Yunnan, China[J].Acta Geochimica, 38(6): 848-862.

    Google Scholar

    HE Mingyue, LOU Yaer, WANG Pu, 2002.Relationship Between Silicification and Stibnite Mineralization in Xikuangshan Antimony Deposit, Hunan Province[J].Mineral Deposits, 21(S1): 384-387(in Chinese with English abstract).

    Google Scholar

    HU Axiang, WEN Jing, PENG Jiantang, 2023.REE geochemical characteristics of calcites in the Xikuangshan antimony deposit, central Hunan and their indicative significances for prospecting[J].Acta Mineralogica Sinica, 43(1): 38-48(in Chinese with English abstract).

    Google Scholar

    HU Ruizhong, SU Wenchao, BI Xianwu, et al., 2002.Geology and Geochemistry of Carlin-type Gold Deposits in China[J].Mineralium Deposita, 37: 378-392.

    Google Scholar

    HU Ruizhong, PENG Jiantang, MA Dongsheng, et al., 2007.Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif[J].Mineral Deposits, 26(6):583-596(in Chinese with English abstract).

    Google Scholar

    HU Xiongwei, 1995.The Geological Setting and Genesis of Xikuangshan Super-Giant Antimony Deposits, Hunan, China[D].Beijing: Chinese Academy of Geological Sciences(in Chinese with English abstract).

    Google Scholar

    KRUPP R E, 1988.Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350 °C[J].Geochimica et Cosmochimica Acta, 52(12):3005-3015.

    Google Scholar

    LI Huan, KONG Hua, GUO Biying, et al., 2020.Fluid inclusion, H-O-S isotope and rare earth element constraints on the mineralization of the Dong’an Sb deposit, South China[J].Ore Geology Reviews, 126: 103759.

    Google Scholar

    LI Jinwei, HU Ruizhong, XIAO Jiafei, et al., 2020.Genesis of gold and antimony deposits in the Youjiang metallogenic province, SW China: Evidence from in situ oxygen isotopic and trace element compositions of quartz[J].Ore Geology Reviews, 116:103257.

    Google Scholar

    LIANG Ting, WANG Denghong, LI Huaqin, et al., 2011.REE geochemistry and Sm-Nd isotope age of garnet from the Dachang, Guangxi[J].Journal of Northwest University(Natural Science Edition), 41(4): 676-681(in Chinese with English abstract).

    Google Scholar

    LIU Xiu, DU Meng, 2019.Analysis of Metallogenic Factors and Prospecting Potentiality of Sb Deposit in Straw Bay, in Hunan Province[J].Southern Metals, (1): 28-32(in Chinese with English abstract).

    Google Scholar

    LUO Kai, ZHOU Jiaxi, FENG Yuexing, et al., 2020.In situ U-Pb Dating of Calcite from the South China Antimony Metallogenic Belt[J].Science, 23(10): 101571.

    Google Scholar

    MA Yuehua, 2022.The relationship between mineralization and magmatism in the Muli antimony deposit, Southeastern Yunnan, China[D].Kunming: Kunming University of Science and Technology(in Chinese with English abstract).

    Google Scholar

    MAO Jingwen, YANG Zongxi, XIE Guiqing, et al., 2019.Critical minerals: International trends and thinking[J].Mineral Deposits, 38(4): 689-698(in Chinese with English abstract).

    Google Scholar

    PAN Jinquan, SUN Jun, SHEN Weijia, et al., 2017.Prospecting Thinking and Model of the Dushan Antimony Ore Field, Guizhou Province, China[J].Geological Science and Technology Information, 36(5): 181-186(in Chinese with English abstract).

    Google Scholar

    PAN Jinquan, WU Denghao, 2017.Comparison of Sources for the Ore-Forming Fluids and Materials for the Antimony Ore Deposits in South and Southwest of Guizhou Province, China[J].Geological Science and Technology Information, 36(4): 123-132(in Chinese with English abstract).

    Google Scholar

    PENG J T, HU R Z, BURNARD P G, 2003.Samarium-neodymium Isotope Systematics of Hydrothermal Calcites from the Xikuangshan Antimony Deposit (Hunan, China): The Potential of Calcite as a Geochronometer[J].Chemical Geology, 200: 129-136.

    Google Scholar

    PENG Jiantang, HU Ruizhong, ZHAO Junhong, et al., 2003.Scheelite Sm-Nd and quartz Ar-Ar dating of the Woxi Au-Sb-W deposit in western Hunan, China[J].Chinese Science Bulletin, 48(18): 1976-1981(in Chinese).

    Google Scholar

    PENG Jiantang, HU Ruizhong, ZHAO Junhong, et al., 2002.Sm-Nd isotopic dating of hydrothermal calcite from the Xikuangshan antimony deposit[J].Chinese Science Bulletin, (10): 789-792(in Chinese).

    Google Scholar

    POKROVSKI G S, BORISOVA A Y, ROUX J, et al., 2006.Antimony speciation in saline hydrothermal fluids: A combined X-ray absorption fine structure spectroscopy and solubility study[J].Geochimica et Cosmochimica Acta, 70(16):4196-4214.

    Google Scholar

    SONG Xiangfa, LAI Jianqing, XU Junwei, et al., 2022.Material Source and Genesis of the Daocaowan Sb Deposit in the Xikuangshan Ore Field: LA-ICP-MS Trace Elements and Sulfur Isotope Evidence from Stibnite[J].Minerals, 12(11): 1407.

    Google Scholar

    USGS, 2022.Mineral Commodity Summaries 2022[R].Reston:USGS: 1-202.

    Google Scholar

    WANG Denghong, 2019.Study on critical mineral resources:significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J].Acta Geologica Sinica, 93(6):1189-1209(in Chinese with English abstract).

    Google Scholar

    WANG Jiasheng, WEN Hanjie, FAN Haifeng, et al., 2012.Sm-Nd geochronology, REE geochemistry and C and O isotope characteristics of calcites and stibnites from the Banian antimony deposit, Guizhou Province, China[J].Geochemical Journal, 46(5): 393-407.

    Google Scholar

    WANG Linjiang, MAN Kunliang, 1994.Analysis of Ore-Control Geological Conditions of Muli Antimony Deposit, Guangnan[J].Yunnan Geology, 13(2): 133-138(in Chinese with English abstract).

    Google Scholar

    WANG Yan, WANG Denghong, WANG Yonglei, et al., 2021.Quantitative research on spatial distribution of antimony deposits in China based on geological big data[J].Geology in China, 48(1): 52-67(in Chinese with English abstract).

    Google Scholar

    WANG Yonglei, CHEN Yuchuan, WANG Denghong, et al., 2012.Scheelite Sm-Nd dating of the Zhazixi W-Sb deposit in Hunan and its geological significance[J].Geology in China, 39(5):1339-1344(in Chinese with English abstract).

    Google Scholar

    WEI Wenzhuo, 1993.Geological characteristics of Maxiong antimony deposit[J].Southwest Mineral Geology, (2): 8-16(in Chinese).

    Google Scholar

    WILLIAMS-JONES A E, NORMAN C, 1997.Controls of mineral parageneses in the system Fe-Sb-S-O[J].Economic Geology, 92(3): 308-324.

    Google Scholar

    WILSON N , WEBSETR-BROWN J, BROWN K, 2007.Controls on stibnite precipitation at two New Zealand geothermal power stations[J].Geothermics, 36(4): 330-347.

    Google Scholar

    WU Jiada, 1993.Antimony vein deposits of China[J].Ore Geology Reviews, 8(3-4): 213-232.

    Google Scholar

    XIAO Xianguo, 2014.Geochronologyg, Ore Geochemistry and Genesis of the Banpo Antimony Deposit, Guizhou Province, China[D].Kunming: Kunming University of Seience and Technology(in Chinese with English abstract).

    Google Scholar

    XU Junwei, LIU Xianghua, LAI Jianqing, et al., 2022.In Situ U-Pb Geochronology of Calcite from the World’s Largest Antimony Deposit at Xikuangshan, Southern China[J].Minerals, 12(7): 899.

    Google Scholar

    XU Junwei, SONG Xiangfa, LAI Jianqing, et al., 2022.Discovery and geological significance of Daocaowan antimony deposit in the Xikuangshan ore field, Central Hunan[J].Mineral Exploration, 13(10): 1444-1454(in Chinese with English abstract).

    Google Scholar

    YAN Jun, FU Shanling, LIU Shen, et al., 2022.Giant Sb metallogenic belt in South China: A product of Late Mesozoic flat-slab subduction of paleo-Pacific plate[J].Ore Geology Reviews, 142: 104697.

    Google Scholar

    YANG Zhaozhu, MA Dongsheng, XIE Qinglin, 1998.The Genesis and Ore-forming Fluid of the Super-large Antimony Deposit of Xikuangshan, China[J].Contributions to Geology and Mineral Resources Research, 13(3): 49-60(in Chinese with English abstract).

    Google Scholar

    ZHENG Minghong, CAI Guosheng, CHEN Xinglong, et al., 2021.The Rb-Sr Dating of Quartz and Geochemistry Studying of the Dushan Antimony Ore-Field, Guizhou, China[J].Bulletin of Mineralogy, Petrology and Geochemistry, 40(1):215-227(in Chinese with English abstract).

    Google Scholar

    ZHOU Yanjing, LI Jianwu, WANG Gaoshang, et al., 2014.Distribution and development situation of global antimony resources[J].China Mining Magazine, 23(10): 13-16(in Chinese with English abstract).

    Google Scholar

    ZHU Yanan, PENG Jiantang, 2015.Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China[J].Ore Geology Reviews, 65(1): 55-69.

    Google Scholar

    ZHU Yanan, PENG Jiantang, XING Langzhang, et al., 2023.U-Pb dating of scheelite, wolframite and apatite from the Woxi Au-Sb-W deposit, western Hunan Province and their geological significance[J].Acta Petrologica Sinica, 39(6):1829-1846(in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(76) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint