|
蔡惠慧, 徐永洋, 李孜轩, 曹豪豪, 冯雅兴, 陈思琼, 李永胜.2019. 基于卷积神经网络模型划分成矿远景区--以甘肃大桥地区金多金属矿田为例[J]. 地质通报, 38(12):1999-2009.
Google Scholar
|
|
陈建平, 吕鹏, 吴文, 王功文, 朱鹏飞, 赵洁. 2007. 基于三维建模的立方体预测模型找矿方法: CN, CN101038680 A[P].2007-09-19.
Google Scholar
|
|
成秋明. 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学--中国地质大学学报, 31(3): 337-348.
Google Scholar
|
|
成秋明. 2007. 成矿过程奇异性与矿产预测定量化的新理论与新方法[J]. 地学前缘, (5): 42-53.
Google Scholar
|
|
成秋明. 2021. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 28(3): 6-25.
Google Scholar
|
|
来杰, 王晓丹, 向前, 宋亚飞, 权文. 2021. 自编码器及其应用综述[J]. 通信学报, 42(9): 218-230.
Google Scholar
|
|
李程. 2021. 深部地质地球化学三维定量矿产预测方法研究-以西秦岭早子沟金矿为例[D]. 成都: 成都理工大学.
Google Scholar
|
|
李康宁, 贾儒雅, 李鸿睿, 汤磊, 刘伯崇, 严康, 韦乐乐. 2020.西秦岭甘肃夏河-合作地区与中酸性侵入岩有关的金铜多金属成矿系统及找矿预测[J]. 地质通报, 39(8): 1191-1203.
Google Scholar
|
|
刘艳鹏, 朱立新, 周永章. 2018. 卷积神经网络及其在矿床找矿预测中的应用--以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 34(11): 3217-3224.
Google Scholar
|
|
刘勇. 2013. 甘肃省枣子沟金矿中酸性脉岩与金成矿关系研究[D]. 西安: 长安大学.
Google Scholar
|
|
马瑶, 赵江南. 2021. 机器学习方法在矿产资源定量预测应用研究进展[J]. 地质科技通报, 40(1): 132-141.
Google Scholar
|
|
毛先成, 戴塔根, 吴湘滨, 邹艳红. 2009. 危机矿山深边部隐伏矿体立体定量预测研究--以广西大厂锡多金属矿床为例[J]. 中国地质, 36(2): 424-435.
Google Scholar
|
|
毛景文. 2001. 西秦岭地区造山型与卡林型金矿床[J]. 矿物岩石地球化学通报, (1): 11-13.
Google Scholar
|
|
韦良喜. 2015. 甘肃省早子沟金矿床构造演化与成矿[D]. 北京:中国地质大学(北京).
Google Scholar
|
|
王世称, 陈永良, 夏立显.2000. 综合信息矿产预测理论与方法[M]. 北京:科学出版社.
Google Scholar
|
|
王世称. 2010. 综合信息矿产预测理论与方法体系新进展[J].地质通报, 29(10): 1399-1403.
Google Scholar
|
|
肖克炎, 李楠, 孙莉, 邹伟, 李莹. 2012. 基于三维信息技术大比例尺三维立体矿产预测方法及途径[J]. 地质学刊, 36(3):229-236.
Google Scholar
|
|
谢学锦, 任天祥, 孙焕振.2018. 中国地球化学图集[M]. 北京:地质出版社.
Google Scholar
|
|
袁峰, 李晓晖, 张明明, 贾蔡, 胡训宇. 2018. 三维成矿预测研究进展[J]. 甘肃地质, 27(1): 32-36.
Google Scholar
|
|
袁峰, 张明明, 李晓晖, 葛粲, 陆三明, 李建设, 周宇章, 兰学毅. 2019. 成矿预测: 从二维到三维[J]. 岩石学报, 35(12):3863-3874.
Google Scholar
|
|
叶天竺, 肖克炎, 严光生. 2007. 矿床模型综合地质信息预测技术研究[J]. 地学前缘, 14(5): 11-19.
Google Scholar
|
|
叶天竺. 2013. 矿床模型综合地质信息预测技术方法理论框架[J]. 吉林大学学报(地球科学版), 43(4): 1053-1072.
Google Scholar
|
|
张继荣. 2016. 甘肃省夏河地区成矿预测及找矿靶区研究[D].西安: 长安大学.
Google Scholar
|
|
张帅. 2021. 甘肃省合作-美武地区综合信息找矿预测研究[D].北京:中国地质大学(北京).
Google Scholar
|
|
张帅, 肖克炎, 朱裕生. 2018. 甘肃夏河--合作一带成矿预测及预测方法比较[J]. 地质学刊, 42(3): 393-400.
Google Scholar
|
|
赵鹏大, 陈建平, 张寿庭. 2003. “三联式”成矿预测新进展[J].地学前缘, 10(2): 455-463.
Google Scholar
|
|
赵鹏大. 2002. “三联式”资源定量预测与评价--数字找矿理论与实践探讨[J]. 地球科学, (5): 482-489.
Google Scholar
|
|
左仁广. 2019. 基于深度学习的深层次矿化信息挖掘与集成[J].矿物岩石地球化学通报, 38(1): 53-60.
Google Scholar
|
|
AITCHISON J, BARCELÓ-VIDAL C, MARTÍN-FERNÁNDEZ J A, PAWLOWSKY-GLAHN V. 2000. Logratio analysis and compositional distance[J] Mathematical Geology, 32(3):271-275.
Google Scholar
|
|
BRAHIMI S, AOUN N B, AMAR C B. 2019. Boosted convolutional neural network for object recognition at large scale[J].Neurocomputing, 330: 337-354.
Google Scholar
|
|
CAI Hui-hui, XU Yong-yang, LI Zi-xuan, CAO Hao-hao, FENG Ya-xing, CHEN Si-qiong, LI Yong-sheng. 2019. The division of metallogenic prospective areas based on convolutional neural network model: A case study of the Daqiao gold polymetallic deposit[J]. Geological Bulletin of China, 38(12):1999-2009(in Chinese with English abstract).
Google Scholar
|
|
CARRANZA E J M, LABORTE A G. 2015. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)[J]. Computers & Geosciences, 74: 60-70.
Google Scholar
|
|
CARRANZA E J M. 2011. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values[J]. Journal of Geochemical Exploration, 110(2): 167-185.
Google Scholar
|
|
CHEN Jian-ping, LÜ Peng, WU Wen, WANG Gong-wen, ZHUPeng-fei, ZHAO Jie. 2007. A cube prediction model exploration method based on 3D modeling CN, CN101038680 A[P].(in Chinese)
Google Scholar
|
|
CHEN Yong-liang, WU Wei. 2017. Mapping mineral prospectivity using an extreme learning machine regression[J]. Ore Geology Reviews, 80: 200-213.
Google Scholar
|
|
CHENG Qiu-ming. 2006. Singularity-generalized self-similarity-fractal spectrum (3S) models[J]. Earth Science-Journal of China University of Geosciences, 31(3):337-348(in Chinese with English abstract).
Google Scholar
|
|
CHENG Qiu-ming. 2007. Singular mineralization processes and mineral resources quantitative prediction: new theories and methods[J]. Earth Science Frontiers, (5): 42-53(in Chinese with English abstract).
Google Scholar
|
|
CHENG Qiu-ming. 2021. What are Mathematical Geosciences and its frontiers?[J]. Earth Science Frontiers, 28(3): 6-25(in Chinese with English abstract).
Google Scholar
|
|
EGOZCUE J J, PAWLOWSKY-GLAHN V. 2005. Groups of parts and their balances in compositional data analysis[J]. Mathematical Geology, 37(7): 795-828.
Google Scholar
|
|
FILZMOSER P, HRON K. 2009. Correlation analysis for compositional data[J]. Mathematical Geosciences, 41(8): 905-919.
Google Scholar
|
|
FILZMOSER P, HRON K, REIMANN C. 2009. Univariate statistical analysis of environmental (compositional) data: problems and possibilities[J]. Science of The Total Environment, 407(23): 6100-6108.
Google Scholar
|
|
FIORE U, PALMIERI F, CASTIGLIONE A, DE SANTIS A. 2013.Network anomaly detection with the restricted Boltzmann machine[J]. Neurocomputing, 122: 13-23.
Google Scholar
|
|
GAO Yuan, ZHANG Zhen-jie, XIONG Yi-hui, ZUO Ren-guang.2016. Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province China[J]. Ore Geology Reviews, 75: 16-28.
Google Scholar
|
|
KINGMA D P, BA J L. 2014. Adam: A Method for Stochastic Optimization[J]. ArXiv e-prints: 1412.6980.
Google Scholar
|
|
LAI Jie, WANG Xiao-dan, XIANG Qian, SONG Ya-fei, QUAN Wen. 2021. Review on autoencoder and its application[J].Journal on Communications, 42(9): 218-230(in Chinese with English abstract).
Google Scholar
|
|
LI Cheng. 2021. 3D quantitative prediction of mineral resources at depth based on geology and geochemistry-A case study of Zaozigou gold deposit in western Qinling[D]. Chengdu:Chengdu University of Techonology(in Chinese with English abstract).
Google Scholar
|
|
LI Kang-ning, JIA Ru-ya, LI Hong-rui, TANG Lei, LIU Bo-chong, YAN Kang, WEI Le-le. 2020. The Au-Cu polymetallic mineralization system related to intermediate to felsic intrusive rocks and the prospecting prediction in Xiahe-Hezuo area of Gansu, West Qinling orogenic belt[J]. Geological Bulletin of China, 39(8): 1191-1203(in Chinese with English abstract).
Google Scholar
|
|
LI Shi, CHEN Jian-ping, XIANG Jie. 2018. Prospecting information extraction by text mining based on convolutional neural networks–A case study of the Lala copper deposit China[J].IEEE Access, 6: 52286-52297.
Google Scholar
|
|
LI Shi, CHEN Jian-ping, XIANG Jie. 2020. Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data[J]. Neural Computing and Applications, 32(7): 2037-2053.
Google Scholar
|
|
LI T F, XIA Q L, ZHAO M Y, GUI Z, LENG S. 2019. Prospectivity Mapping for Tungsten Polymetallic Mineral Resources Nanling Metallogenic Belt South China: Use of Random Forest Algorithm from a Perspective of Data Imbalance[J].Natural Resources Research, 29(1): 1-25.
Google Scholar
|
|
LIU Yue, ZHOU Ke-fa, ZHANG Nan-an, WANG Jin-lin. 2018.Maximum entropy modeling for orogenic gold prospectivity mapping in the Tangbale-Hatu belt, western Junggar China[J].Ore Geology Reviews, 100: 133-147.
Google Scholar
|
|
LIU Yan-peng, ZHU Li-xin, ZHOU Yong-zhang. 2018. Application of convolutional neural network in prospecting prediction of ore deposits: Taking the Zhaojikou Pb-Zn ore deposit in Anhui Province as a case[J]. Acta Petrologica Sinica, 34(11):3217-3224(in Chinese with English abstract).
Google Scholar
|
|
LIU Yong. 2013. Relationship between intermediate-acid dike rock and gold mineralization of the Zaozigou gold deposit, Gansu Province[D]. Xi’an: Chang’an University(in Chinese with English abstract).
Google Scholar
|
|
MA Yao, ZHAO Jiang-nan. 2021. Advances in the application of machine learning methods in mineral prospectivity mapping[J]. Bulletin of Geological Science and Technology, 40(1):132-141(in Chinese with English abstract).
Google Scholar
|
|
MAO Jing-wen. 2001. Geology, distribution and classification of gold deposits in the western Qinling Belt, Central China[J].Bulletin of Mineralogy, Petrology and Geochemistry, (1):11-13(in Chinese with English abstract).
Google Scholar
|
|
MAO Xian-cheng, DAI Ta-gen, WU Xiang-bin, ZOU Yan-hong.2009. The stereoscopic quantitative prediction of concealed ore bodies in the deep and marginal parts of crisis mines: a case study of the Dachang tin polymetallic ore deposit in Guangxi[J]. Geology in China, 36(2): 424-435(in Chinese with English abstract).
Google Scholar
|
|
RODRIGUEZ-GALIANO V, SANCHEZ-CASTILLO M, CHICA-OLMO M, CHICA-RIVAS M. 2015. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore Geology Reviews, 71: 804-818.
Google Scholar
|
|
SHABANKAREH M, HEZARKHANI A. 2017. Application of support vector machines for copper potential mapping in Kerman region, Iran[J]. Journal of African Earth Sciences, 128: 116-126.
Google Scholar
|
|
SUN Tao, LI Hui, WU Kai-xing, CHEN Fei, ZHU Zhong, HU Zi-juan. 2020. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province, China[J]. Minerals, 10(2): 102.
Google Scholar
|
|
VALENTINE A P, TRAMPERT J. 2012. Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data[J]. Geophysical Journal International, 189(2): 1183-1202.
Google Scholar
|
|
WANG Ya-si, YAO Hong-xun, ZHAO Si-cheng. 2016. Au to-encoder based dimensionality reduction[J]. Neurocomputing, 184: 232-242.
Google Scholar
|
|
WANG Shi-cheng, CHEN Yong-liang, XIA Li-xian.2000. Thetheory and method of integrated information mineral prediction[M]. Beijing: Science Press(in Chinese).
Google Scholar
|
|
WANG Shi-cheng. 2010. The new development of theory and method of synthetic information mineral resources prognosis[J]. Geological Bulletin of China, 29(10): 1399-1403(in Chinese with English abstract).
Google Scholar
|
|
WEI Liang-xi. 2015. Tectonic evolution and mineralization of the Zaozigou gold deposit, Gansu Province[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).
Google Scholar
|
|
XIAO Ke-yan, LI Nan, SUN Li, ZOU Wei, LI Ying. 2012. Large scale 3D mineral prediction methods and channels based on 3D information technology[J]. Journal of Geology, 36(3):229-236(in Chinese with English abstract).
Google Scholar
|
|
XIE Xue-jin, REN Tian-xiang, SUN Huan-zhen.2012. Geochemical Atlas of China[M]. Beijing: Geology Press, Beijing (in Chinese with English abstract).
Google Scholar
|
|
XIONG Yi-hui, ZUO Ren-guang, CARRANZA E J M. 2018.Mapping mineral prospectivity through big data analytics and a deep learning algorithm[J]. Ore Geology Reviews, 102:811-817.
Google Scholar
|
|
XIONG Yi-hui, ZUO Ren-guang. 2016. Recognition of geochemical anomalies using a deep autoencoder network[J]. Computers & Geosciences, 86: 75-82.
Google Scholar
|
|
YE Tian-zhu, XIAO Ke-yan, YAN Guang-sheng. 2007. Methodology of deposit modeling and mineral resource potential assessment using integrated geological information[J]. Earth Science Frontiers, 14(5): 11-19(in Chinese with English abstract).
Google Scholar
|
|
YE Tian-zhu. 2013. Theoretical framework of methodology of deposit modeling and integrated geological information for mineral resource potential assessment[J]. Journal of Jilin University(Earth Science Edition), 43(4): 1053-1072(in Chinese with English abstract).
Google Scholar
|
|
YUAN Feng, LI Xiao-hui, ZHANG Ming-ming, JIA Cai, HU Xun-yu. 2018. Research progress of 3D prospectivity modeling[J]. Gansu Geology, 27(1): 32-36(in Chinese with English abstract).
Google Scholar
|
|
YUAN Feng, ZHANG Ming-ming, LI Xiao-hui, GE Can, LU San-ming, LI Jian-she, ZHOU Yu-zhang, LAN Xue-yi. 2019.Prospectivity modeling: From two-dimension to three-dimension[J]. Acta Petrologica Sinica, 35(12): 3863-3874(in Chinese with English abstract).
Google Scholar
|
|
ZHANG Chun-jie, ZUO Ren-guang. 2021. Recognition of multivariate geochemical anomalies associated with mineraliaztion using an improved generative adversarial network[J]. Ore Geology Reviews, 136: 104264.
Google Scholar
|
|
ZHANG Ji-rong. 2016. The metallogenic prognosis and mineral resource targeting in the Xiahe area, Gansu Province[D].Xi’an: Chang’an University(in Chinese with English abstract).
Google Scholar
|
|
Z HANG Shuai. 2021. Multi-geoinformation integration for mineral prospectivity mapping in the Hezuo-Meiwu district, Gansu Province[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).
Google Scholar
|
|
ZHANG Shuai, XIAO Ke-yan, CARRANZA E J M, YANG Fan.2019. Maximum entropy and random forest modeling of mineral potential: Analysis of gold prospectivity in the Hezuo–Meiwu district, West Qinling orogeny, China[J]. Natural Resources Research, 28(3): 645-664.
Google Scholar
|
|
ZHANG Shuai, CARRANZA E J M, XIAO Ke-yan, WEI Han-tao, YANG Fan, CHEN Zheng-hui, LI Nan, XIANG Jie. 2021.Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in Outliers[J]. Natural Resources Research, 31(4): 1981-1999.
Google Scholar
|
|
ZHANG Shuai, XIAO Ke-yan, ZHU Yu-sheng. 2018. Metallogenic prediction and prediction method comparsion in Xia-Hezuo area, Gansu Province[J]. Journal of Geology, 42(3):393-400(in Chinese with English abstract).
Google Scholar
|
|
ZHANG Zhi-bo, JAISWAL P, RAI R. 2018. FeatureNet: Machining feature recognition based on 3D Convolution Neural Network[J]. Computer-Aided Design, 101: 12-22.
Google Scholar
|
|
ZHAO Peng-da, CHEN Jian-ping, ZHANG Shou-ting. 2003. The new development of “Three Components” quantitative mineral prediction[J]. Earth Science Frontiers, 10(2): 455-463(in Chinese with English abstract).
Google Scholar
|
|
ZHAO Peng-da. 2002. “Three-Component” quantitative resource prediction and assessments: Theory and pratice of digital mineral prospecting[J]. Earth Science, (5): 482-489(in Chinese with English abstract).
Google Scholar
|
|
ZHENG Wen-bao, LIU Bing-li, MCKINLEY M J, COOPER M R, WANG Lu. 2021. Geology and geochemistry-based metallogenic exploration model for the eastern Tethys Himalayan metallogenic belt, Xizang[J]. Journal of Geochemical Exploration, 224: 106743.
Google Scholar
|
|
ZUO Ren-guang, CARRANZA E J M. 2011. Support vector machine: A tool for mapping mineral prospectivity[J]. Computers & Geosciences, 37(12): 1967-1975.
Google Scholar
|
|
ZUO Ren-guang. 2014. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas[J]. Journal of Geochemical Exploration, 136: 93-101.
Google Scholar
|
|
ZUO Ren-guang. 2017. Machine learning of mineraliza tion-related geochemical anomalies: A review of potential methods[J]. Natural Resources Research, 26(4): 457-464.
Google Scholar
|
|
ZUO Ren-guang, XIONG Yi-hui. 2018. Big data analytics of identifying geochemical anomalies supported by machine learning methods[J]. Natural Resources Research, 27(1): 5-13.
Google Scholar
|
|
ZUO Ren-guang. 2019. Deep learning-based mining and integration of deep-level mineralization information[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 53-60(in Chinese with English abstract).
Google Scholar
|