2024 Vol. 40, No. 3
Article Contents

ZHAO Ya-Jun, ZHANG Zhen-Yong, WANG Dong-Yuan, JIANG Ke, HUANG Dong. 2024. Experimental Study of an Oil and Gas Pipeline Across a Landslide Model. South China Geology, 40(3): 538-547. doi: 10.3969/j.issn.2097-0013.2024.03.009
Citation: ZHAO Ya-Jun, ZHANG Zhen-Yong, WANG Dong-Yuan, JIANG Ke, HUANG Dong. 2024. Experimental Study of an Oil and Gas Pipeline Across a Landslide Model. South China Geology, 40(3): 538-547. doi: 10.3969/j.issn.2097-0013.2024.03.009

Experimental Study of an Oil and Gas Pipeline Across a Landslide Model

More Information
  • Landslides are one of the main geological hazards that cause damage to long-distance buried oil and gas pipelines. This article focuses on shallow soil and lateral landslides, conducts full-scale model tests with large and small pipe diameters. The force response law and deformation failure characteristics of oil and gas pipelines crossing landslides were studied by controlling the slope gradient and displacement through a model box loading device. The results indicate that when the slope gradient is greater than 20°, the strain amplification of the pipeline increases significantly. The pipeline undergoes local buckling at the mid-span position, presenting a symmetrical beam-like bending failure mode as a whole. The ultimate compressive strain value obtained from the experiment is basically consistent with the calculation results of DNV (DET NORSKE VERITAS) regulations and relevant domestic regulations. When the pipeline is in the stage of elastic and elastoplastic deformation, the axial strain measured in the experiment is in good agreement with the results of numerical simulation (PSI model and solid unit model), but when the pipeline buckles and fails, the experimental value is significantly greater than the numerical simulation result. This study provides an important reference for the laying of oil and gas pipelines and landslide prevention in mountainous areas.

  • 加载中
  • [1] 陈利琼,宋利强,吴世娟,邱星栋,刘 琦,夏燕,孙靖云.2017.基于有限元方法的滑坡地段输气管道应力分析[J]. 天然气工业,37(2):84-91. doi: 10.3787/j.issn.1000-0976.2017.02.011

    CrossRef Google Scholar

    [2] 邓道明,周新海,申玉平.1998.横向滑坡过程中管道的内力和变形计算[J]. 油气储运,17(7):18-22.

    Google Scholar

    [3] 国家发展改革委,国家能源局. 2017. 关于印发《中长期油气管网规划》的通知 [EB/OL]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201707/t20170712_962238.html.

    Google Scholar

    [4] 黄维和,郑洪龙,李明菲.2019.中国油气储运行业发展历程及展望[J]. 油气储运,38(1):1-11. doi: 10.6047/j.issn.1000-8241.2019.01.001

    CrossRef Google Scholar

    [5] 林 冬,雷 宇,许可方,黄润秋,朱 勇,罗 敏,陶宏伟.2011.横向滑坡对管道的影响试验[J]. 石油学报,32:728-732. doi: 10.7623/syxb201104026

    CrossRef Google Scholar

    [6] 刘 慧. 2008. 滑坡作用下埋地管线反应分析[D]. 大连理工大学硕士学位论文.

    Google Scholar

    [7] 刘 鹏,李玉星,张 宇,孙明源,张 玉,张 炎.2021.典型地质灾害下埋地管道的应力计算[J]. 油气储运,40:157-165.

    Google Scholar

    [8] 马清文. 2007. 滑坡与输油气管道的力学机理与防治—以兰成渝输油管道为例[D]. 中国科学院大学博士学位论文.

    Google Scholar

    [9] 帅 健,王晓霖,左尚志.2008.地质灾害作用下管道的破坏行为与防护对策[J]. 焊管,(5):9-15+93. doi: 10.3969/j.issn.1001-3938.2008.05.002

    CrossRef Google Scholar

    [10] 王仁超. 2019. 滑坡作用下管道变形破坏机理试验研究[D]. 中国科学院大学博士学位论文.

    Google Scholar

    [11] 臧雪瑞,顾晓婷,王秋妍,曹 平.2020.深层圆弧滑坡作用下埋地管道有限元模型研究[J]. 能源化工,41:65-70. doi: 10.3969/j.issn.1006-7906.2020.01.015

    CrossRef Google Scholar

    [12] 中国石油天然气集团公司. 2018. SY/T 7403–2018油气输送管道应变设计规范[S]. 北京:石油工业出版社.

    Google Scholar

    [13] American Bureau of Shipping. 2006. ABS 2006 ABS guide for building and classing subsea pipeline systems [S]. Houston: ABS.

    Google Scholar

    [14] American Petroleum Institute Publishing Services. 1999. Designs, construction, operation and maintenance coffshore pipelines (Limit state design)[S]. Washington DC: API Publishing Services.

    Google Scholar

    [15] American Petroleum Institute. 2005. API 1104 Welding of pipelines and related facilities [S]. Washington DC: API Publishing Services.

    Google Scholar

    [16] Canadian Standards Association. 2007. CSA-Z662-2007 Oil and gas pipeline systems[S]. Toronto: CSA Group.

    Google Scholar

    [17] Liao Y, Liu C, Wang T, Xu T, Zhang J, Ge L. 2021. Mechanical behavior analysis of gas pipeline with defects under lateral landslide[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(23): 6752-6766.

    Google Scholar

    [18] O'Rourke M J, Liu X, Flores-Berrones R. 1995. Steel pipe wrinkling due to longitudinal permanent ground deformation[J]. Journal of Transportation Engineering, 121: 443-451. doi: 10.1061/(ASCE)0733-947X(1995)121:5(443)

    CrossRef Google Scholar

    [19] Rajani B B, Robertson P K, Morgenstern N R. 1995, Simplified design methods for pipelines subject to transverse and longitudinal soil movements[J]. Canadian Geotechnical Journal, 32: 309-323.

    Google Scholar

    [20] Suzuki N, Igi S, Masamura K. 2008. Seismic integrity of high-strength1 pipelines[J]. JFE Technical Report, (17): 14-19.

    Google Scholar

    [21] DET NORSKE VERITAS. 2007. DNV OS-F101 Offshore standard- submarine pipeline systems[S]. Norway: DNV.

    Google Scholar

    [22] Zhang S Z, Li S Y, Chen S N, Wu Z Z, Wang R J, Duo Y Q. 2017. Stress analysis on large-diameter buried gas pipelines under catastrophic landslides[J]. Petroleum Science, 14: 579-585. doi: 10.1007/s12182-017-0177-y

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(2)

Article Metrics

Article views(81) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint