Citation: | WANG Li-Li, CHEN Qi, ZENG Run-Ling, OUYANG Yong-Peng, LI Zeng-Hua, YANG Li-Fei. 2024. Three-Dimensional Geological Characteristics of Ore-Controlling Geological Body of Lengshuikeng Porphyry Deposit in Jiangxi Province. South China Geology, 40(3): 504-518. doi: 10.3969/j.issn.2097-0013.2024.03.006 |
The Lengshuikeng silver-lead-zinc ore field in Jiangxi Province is located on the southern side of the suture zone of the Yangtze block and the Cathaysian block, and the intersection of the Wuyi silver polymetallic metallogenic belt and the Qinhang metallogenic belt. It is an important silver-lead-zinc ore field in China. Based on the geological data of ore field geological map, exploration line profile and borehole histogram, using GOCAD software, the three-dimensional model of porphyry body, fracture and ore body, as well as the grade model of ore body have been established, which provides a visual representation of the relationship between ore-forming geological bodies. This model further confirmed that the porphyry ore body is produced in the front and main zones of the granite porphyry, and is controlled by the regional nappe structure. The silver grade distribution is spatially variable, with high-grade ores mainly distributed in the upper part of the ore body, and the grade distribution of lead and zinc is relatively uniform; the ore body is mostly produced between F1 and F2, and both the ore body and the granite porphyry body are controlled by fractures. The establishment of the 3D model of the Lengshuikeng silver-lead-zinc ore field provides important technical support for future prospecting of the deep edge of the ore field, especially for the exploration of the peripheral and deep concealed porphyry ore bodies.
[1] | 陈麒玉,刘 刚,何珍文,张夏林,吴冲龙.2020.面向地质大数据的结构—属性一体化三维地质建模技术现状与展望[J]. 地质科技通报,39(4):51-58. |
[2] | 董 梅,慎乃齐,胡 辉,刘 飞.2008.基于GOCAD的三维地质模型构建方法[J]. 桂林工学院学报,28(2):188-192. |
[3] | 何细荣,黄冬如,饶建锋.2010.江西贵溪冷水坑矿田下鲍银铅锌矿床地质特征及成因探讨[J]. 中国西部科技,9(25):1-3+28. doi: 10.3969/j.issn.1671-6396.2010.25.001 |
[4] | 胡 莹.2014.三维建模流程的优化和简化[J]. 湖南师范大学自然科学学报,37(2):90-94. |
[5] | 李 铎. 2020. 山东省曲家金矿床GOCAD三维建模与成矿预测[D]. 中国地质大学(北京)硕士学位论文. |
[6] | 李章林,吴冲龙,张夏林,翁正平,刘 刚,张志庭,张军强.2020.地质科学大数据背景下的矿体动态建模方法探讨[J]. 地质科技通报,39(4):59-68. |
[7] | 李兆鼐,权 恒,李之彤. 2003. 中国东部中新生代火成岩及其深部过程[M]. 北京:地质出版社. |
[8] | 刘 镐. 2024. 贵州烂泥沟金矿三维定量成矿预测研究[D]. 贵州大学博士学位论文. |
[9] | 刘同文,于广婷,张志进,张志进,宋冠涵.2018.胶东金矿三维地质建模技术研究[J]. 地矿测绘,34(2):1-3. doi: 10.3969/j.issn.1007-9394.2018.02.001 |
[10] | 罗渌川,周耀湘,肖 婷.2014.江西冷水坑矿田斑岩型银铅锌矿床成矿期次探讨[J]. 民营科技,(8):77. doi: 10.3969/j.issn.1673-4033.2014.08.075 |
[11] | 吕 鹏,张 炜,刘 国,王淑玲.2013.国外重要地质调查机构三维地质填图工作进展[J]. 国土资源情报,(3):13-18. |
[12] | 毛先成,唐艳华,赖健清,邹艳红,陈进,彭省临,邵拥军.2011.凤凰山矿田成矿地质体三维结构与控矿地质因素分析[J]. 地质学报,85(9):1507-1518. |
[13] | 明小泉,贺海龙.2018.冷水坑层状富铅锌银矿地质特征及成矿[J]. 四川地质学报,38(1):73-76. doi: 10.3969/j.issn.1006-0995.2018.01.015 |
[14] | 孟祥金,徐文艺,杨竹森,侯增谦,李振清,于玉帅,肖茂章,何细荣,万浩章.2012.江西冷水坑矿田火山-岩浆活动时限:SHRIMP锆石U-Pb年龄证据[J]. 矿床地质,31(4):831-838. doi: 10.3969/j.issn.0258-7106.2012.04.012 |
[15] | 潘诗辰,毛先成.2015.三维空间下的证据权建模方法与资源预测应用[J]. 地质学刊,39(3):373-382. doi: 10.3969/j.issn.1674-3636.2015.03.373 |
[16] | 钱迈平,张宗言,余明刚,骆学全,张雪辉,孙建东,段 政.2015.江西贵溪冷水坑晚侏罗世铁锰白云岩地层年龄及沉积环境[J]. 地层学杂志,39(4):380-394. |
[17] | 冉祥金. 2020. 区域三维地质建模方法与建模系统研究[D]. 吉林大学博士学位论文. |
[18] | 田宜平,吴冲龙,翁正平,刘 刚,张志庭,陈麒玉.2020.地质大数据可视化关键技术探讨[J]. 地质科技通报,39(4):29-36. |
[19] | 王功文,张智强,李瑞喜,李俊建,沙德铭,曾庆栋,庞振山,李大鹏,黄蕾蕾.2021.华北重点矿集区大数据三维/四维建模与深层次集成的资源预测评价[J]. 中国科学:地球科学,51(9):1594-1610. |
[20] | 王永庆,李 山,杨真亮,刘彩杰,隋晓玲,刘向东.2022.胶东玲南—水旺庄巨型金矿床三维地质特征及断裂控矿规律[J]. 地质通报,41(6):977-985. doi: 10.12097/j.issn.1671-2552.2022.06.006 |
[21] | 吴志春,郭福生,林子瑜,侯曼青,罗建群.2016.三维地质建模中的多源数据融合技术与方法[J]. 吉林大学学报(地球科学版),46(6):1895-1913. |
[22] | 武 强,徐 华.2004.三维地质建模与可视化方法研究[J]. 中国科学(D辑:地球科学),(1):54-60. |
[23] | 肖茂章,漆光明.2014.江西冷水坑铅锌银矿田成矿系统与成矿模式[J]. 地质与勘探,(2):311-320. |
[24] | 肖 婷,陈 琪,周耀湘,吴筱萍,贺 玲. 2019. 江西省贵溪市东坑—麻地调查区地质特征及找矿前景[J]. 世界有色金属,(21):48+50. |
[25] | 徐庆胜,魏英文,黄安杰,吴才来,赵红松,狄永军.2014.江西上饶梨子坑火山盆地潜火山岩地球化学特征、锆石 U-Pb 年龄及其与铅锌矿成矿关系[J]. 地质论评,60(4):932-944. |
[26] | 叶思源,吴树仁,何淑军.2010.三维地质建模的数据融合与误差分析[J]. 桂林理工大学学报,30(3):350-355. doi: 10.3969/j.issn.1674-9057.2010.03.005 |
[27] | 余心起,吴淦国,张 达,狄永军,代堰锫,邱骏挺.2008.北武夷地区逆冲推覆构造的特征及其控矿作用[J]. 地质通报,(10):1667-1677. doi: 10.3969/j.issn.1671-2552.2008.10.009 |
[28] | 昝 芳,漆 剑,杨启军.2016.江西冷水坑铅锌矿田断裂构造与成矿作用[J]. 云南地质,35(4):483-487. doi: 10.3969/j.issn.1004-1885.2016.04.007 |
[29] | 张春茂. 2013. 江西省冷水坑银铅锌矿床矿石特征及成矿条件[D]. 成都理工大学硕士学位论文. |
[30] | 张 伟,薛林福,彭 冲,柴 源,成 伟.2013.基于剖面三维地质建模方法及在本溪地区应用[J]. 地质与资源,22(5):403-408. doi: 10.3969/j.issn.1671-1947.2013.05.010 |
[31] | 张夏林,吴冲龙,周 琦,翁正平,袁良军,何昆洋,张权莉,杨炳南.2020.基于勘查大数据和数据集市的锰矿床三维地质建模[J]. 地质科技通报,39(4):12-20. |
[32] | 张燕飞,朱杰勇,张 威.2011.基于GOCAD的三维地质模型构建[J]. 河北工程大学学报:自然科学版,28(4):69-73. |
[33] | 张垚垚,王长明,徐贻赣,刘建光,万浩章,张 达.2010.江西冷水坑银铅锌矿床综合找矿模型[J]. 金属矿山,(12):100-106. |
[34] | 赵志刚,万浩章,董光裕,何细荣.2008.江西贵溪冷水坑银铅锌矿田及外围构造—岩浆—成矿系统解析[J]. 中国西部科技,7(30):25-28. doi: 10.3969/j.issn.1671-6396.2008.30.011 |
[35] | 朱振洲,雷晓东,武 雄,徐能雄,姜兴宇.2020.基于三维地质建模的北京市昌平新城地热资源量评价[J]. 现代地质,34(1):207-213. |
[36] | 左力艳. 2008. 江西冷水坑斑岩型银铅锌矿床成矿作用研究[D]. 中国地质科学院博士学位论文. |
[37] | 曾 敏,赵信文,陈 松,王晓晗,皮鹏程,侯清芹,孙慧敏.2022.基于多源数据融合的广州南沙核心区三维工程地质建模[J]. 华南地质,38(2):281-291. doi: 10.3969/j.issn.2097-0013.2022.02.009 |
[38] | 曾祥辉,贺 玲,章敬若,何细荣,陈国华,饶建锋,杨明桂. 2022. 北武夷冷水坑银铅锌矿田构造控岩-控矿特征[A]. //江西省地质学会,江西省自然资源厅,江西省地质局,东华理工大学. 2022. 江西地学新进展. 江西省地质矿产勘查开发局九一二大队; 江西省地质局. |
[39] | Jin X, Wang G W, Tang P, Hu C M, Liu Y W, Zhang S K. 2020. 3D geological modelling and uncertainty analysis for 3D targeting in Shanggong gold deposit (China)[J]. Journal of Geochemical Exploration, 210: 106442. doi: 10.1016/j.gexplo.2019.106442 |
Structural sketch of Lengshuikeng (a) and geological sketch of Lengshuikeng Ag-Pb-Zn ore field (b)
Modeling flow chart
3D geological model of Lengshuikeng ore field
Rock mass in modeling area
Statistics of fault and fault dip angle
Spatial distribution map of porphyry ore body
Orebody grade model
Schematic diagram of relationship between porphyry ore body and granite porphyry
Ore body and granite porphyry slice section diagram
Plans of granite porphyry and middle part of ore body with different elevations
The relationship between ore grade and porphyry body
Relationship between porphyry ore body and fault
Orebody grade model and fracture relationship diagram