[1] |
李承三.1956.长江发育史[J].人民长江,(12):3-6.
Google Scholar
|
[2] |
廖喜林.1999.逆插支流的演变与河流掉向的关系[J].地质灾害与环境保护,10(2):14-17+23.
Google Scholar
|
[3] |
唐贵智.2001.长江三峡地区新构造地质灾害和第四纪冰川作用与三峡形成图集[M].武汉:湖北科学技术出版社.
Google Scholar
|
[4] |
田陵君,李平忠,罗雁.1996.长江三峡河谷发育史[M].成都:西南交通大学出版社.
Google Scholar
|
[5] |
王平,郑洪波,刘少峰.2013.长江中游反向过程——来自四川盆地东部的构造地貌指示[J]第四纪研究, 33(4):631-644.
Google Scholar
|
[6] |
杨达源.2006.长江地貌过程[M].北京:地质出版社.
Google Scholar
|
[7] |
叶良辅,谢家荣.1925.扬子江流域巫山以下之地质构造及地文史[J].地质汇报,第7号:69-90.
Google Scholar
|
[8] |
张斌,艾南山,黄正文,易成波,覃发超.2007.中国嘉陵江河曲的形态与成因[J].科学通报,52(22):2671-2682.
Google Scholar
|
[9] |
赵诚.1996.长江三峡河流袭夺与河流起源[J].长春地质学院学报,26(4):69-74.
Google Scholar
|
[10] |
Abendanon E C. 1908. Structural geology of the middle Yang-Tzïkiang Gorges[J]. The Journal of Geology, 16(7): 587-616.
Google Scholar
|
[11] |
Addison P S. 2017. The illustrated wavelet transform handbook: Introductory theory and applications in science, engineering, medicine and finance [M]. CRC press.
Google Scholar
|
[12] |
Barbour G B. 1936. Physiographic history of the Yangtze[J].Geographical Journal, 87(1): 17-32.
Google Scholar
|
[13] |
Braun D D. 1983. Lithologic control of bedrock meander dimensions in the Appalachian Valley and Ridge Province[J]. Earth Surface Processes and Landforms, 8(3):223-237.
Google Scholar
|
[14] |
Cao L C, Shao L, Xu D, Cui Y C. 2023. Provenance and evolution of East Asian large rivers recorded in the East and South China Seas: A review[J]. Geological Society of America Bulletin, 135(11-12):2723-2752.
Google Scholar
|
[15] |
Chang T P, Toebes G H. 1970. A statistical comparison of meander planforms in the Wabash Basin [J]. Water Resources Research, 6(2): 557-578.
Google Scholar
|
[16] |
Church M. 1992. Channel morphology and typology.//In: The Rivers Handbook [M]. Eds. P. Calow, P., Petts G., Blackwell Scientific Publications, Oxford.
Google Scholar
|
[17] |
Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns [J]. Tectonics, 23(1): TC1006.
Google Scholar
|
[18] |
Clift P D, Long H V, Hinton R, Ellam R M, Hannigan R, Tan M T, Blusztajn J, Duc N A. 2008. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments [J]. Geochemistry Geophysics Geosystems, 9(4):1-29.
Google Scholar
|
[19] |
Davis W M. 1893. The Osage River and the Ozark Uplift [J]. Science, 22(563): 276-279.
Google Scholar
|
[20] |
Dente E, Lensky N G, Morin E, Enzel Y. 2021. From straight to deeply incised meandering channels: Slope impact on sinuosity of confined streams [J]. Earth Surface Processes and Landforms, 46(5): 1041-1054.
Google Scholar
|
[21] |
Devauchelle O, Petroff A P, Seybold H F, Rothman D H. 2012. Ramification of stream networks [J]. Proceedings of the National Academy of Sciences, 109(51): P20832.
Google Scholar
|
[22] |
Dozier J. 1976. An examination of the variance minimization tendencies of a supraglacial stream [J]. Journal of Hydrology, 31(3-4): 359-380.
Google Scholar
|
[23] |
Dury G H. 1954. Contribution to a general theory of meandering valleys [J]. American Journal of Science, 252(4): 193-224.
Google Scholar
|
[24] |
Ferguson R, Hoey T. 2008. Effects of tributaries on main-channel geomorphology [J]. River Confluences, Tributaries and the Fluvial Network, 183-208.
Google Scholar
|
[25] |
Ferguson R I.1975. Meander irregularity and wavelength estimation [J]. Journal of Hydrology, 26(3-4): 315-333.
Google Scholar
|
[26] |
Frasson R P D M, Pavelsky T M, Fonstad M A, Durand M T, Allen G H, Schumann G, Yang X . 2019. Global relationships between river width, slope, catchment area, meander wavelength, sinuosity, and discharge [J]. Geophysical Research Letters, 46(6): 3252-3262.
Google Scholar
|
[27] |
Gardner T W. 1975. The history of Part of the Colorado River and Its tributaries: An Experimental Study [J].Four Corners Geological Society, 8:87-95.
Google Scholar
|
[28] |
Gutierrez R R, Abad J D. 2014. On the analysis of the medium term planform dynamics of meandering rivers [J]. Water Resources Research, 50(5): 3714-3733.
Google Scholar
|
[29] |
Gutierrez R R, Abad J D, Choi M, Montoro H. 2014. Characterization of confluences in free meandering rivers of the Amazon basin [J]. Geomorphology, 220: 1-14.
Google Scholar
|
[30] |
Hackney C, Carling P. 2011. The occurrence of obtuse junction angles and changes in channel width below tributaries along the Mekong River, south-east Asia [J]. Earth Surface Processes and Landforms, 36(12): 1563-1576.
Google Scholar
|
[31] |
Harden D R. 1990. Controlling factors in the distribution and development of incised meanders in the central Colorado Plateau [J]. Geological Society of America Bulletin, 102(2): 233-242.
Google Scholar
|
[32] |
Harvey A M. 2007. High sinuosity bedrock channels: response to rapid incision—examples in SE Spain [J]. Revista C&G, 21(3-4): 21-47.
Google Scholar
|
[33] |
Hooke J M. 1986. The significance of mid-channel bars in an active meandering river [J]. Sedimentology, 33(6):839-850.
Google Scholar
|
[34] |
Hooke J M. 1984. Changes in river meanders: a review of techniques and results of analyses [J]. Progress in Physical Geography, 8(4): 473-508.
Google Scholar
|
[35] |
Hooshyar M, Singh A, Wang D B. 2017. Hydrologic controls on junction angle of river networks [J]. Water Resources Research, 53(5): 4073-4083.
Google Scholar
|
[36] |
Horton R E. 1932. Drainage-basin characteristics [J]. Transactions, American geophysical union, 13: 350-361.
Google Scholar
|
[37] |
Horton R E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology [J]. Geological Society of America Bulletin, 56(3): 275-370.
Google Scholar
|
[38] |
Howard A D, Hemberger A T. 1991. Multivariate characterization of meandering [J]. Geomorphology, 4 (3-4): 161-186.
Google Scholar
|
[39] |
Kale V S. 2005. The sinuous bedrock channel of the Tapi River, Central India: Its form and processes [J]. Geomorphology, 70(3-4): 296-310.
Google Scholar
|
[40] |
Kniep A. 1905. Der Yangtze als Weg zwischen den westlichen und ostlichen China [J]. Gerlands Beiträg. z. Geophysik, 7: 1-31.
Google Scholar
|
[41] |
Kong P, Granger D E, Wu F Y, Caffee M W, Wang Y J, Zhao X T , Zheng Y. 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River [J]. Earth and Planetary Science Letters, 278(1-2): 131-141.
Google Scholar
|
[42] |
Lee J S, Chao Y T. 1924. Geology of the gorge district of the Yangtze(from Ichang to Tzekuei)with special reference to the development of the gorges [J]. Acta Geologica Sinica(English Edition), 3(3-4): 351-392.
Google Scholar
|
[43] |
Leopold L B, Langbein W B. 1966. River meanders [J]. Scientific American, 214: 60-73.
Google Scholar
|
[44] |
Lubowe J K. 1964. Stream junction angles in the dendritic drainage pattern [J]. American Journal of Science, 262(2): 325-339.
Google Scholar
|
[45] |
Marani M, Lanzoni S, Zandolin D. 2002. Tidal meanders [J]. Water Resources Research, 38(11): 1225.
Google Scholar
|
[46] |
Montgomery D R, Gran K B. 2001. Downstream variations in the width of bedrock channels [J]. Water Resources Research, 37(6): 1841-1846.
Google Scholar
|
[47] |
Osterkamp W R, Hedman E. 1981. Perennial-streamflow characteristics related to channel geometry and sediment in the Missouri River basin [M]. US Government Printing Office.
Google Scholar
|
[48] |
Pérez-Peña J V, Al-Awabdeh M, Azañón J M, Galve J P, Booth-Rea G, Notti D. 2017. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles [J]. Computers & Geosciences, 104(C): 135-150.
Google Scholar
|
[49] |
Rodriguez-Iturbe I, Rinaldo A. 1997. Fractal river basins: chance and self-organization [M]. Cambridge University Press.
Google Scholar
|
[50] |
Ruben L D, Naito K, Gutierrez R R, Szupiany R, Abad J D. 2021. Meander Statistics Toolbox(MStaT): A toolbox for geometry characterization of bends in large meandering channels [J]. SoftwareX, 14: 100674.
Google Scholar
|
[51] |
Schumm S A. 1967. Meander wavelength of alluvial rivers [J]. Science, 157(3796): 1549-1550.
Google Scholar
|
[52] |
Speight J G. 1965. Meander spectra of the Angabunga River [J]. Journal of Hydrology, 3(1): 1-15.
Google Scholar
|
[53] |
Stark C P, Barbour J R, Hayakawa Y S, Hattanji T, Hovius N, Chen H G, Lin C W , Horng M J , Xu K Q, Fukahata Y. 2010. The climatic signature of incised river meanders[J]. Science, 327(5972): 1497-1501.
Google Scholar
|
[54] |
Stølum H-H. 1996. River meandering as a self-organization process[J]. Science, 271(5256): 1710-1713.
Google Scholar
|
[55] |
Ting S. 1944. The Origin of the Water-Gaps on the Yangtze and Chialing Rivers[J]. Bulletin of the Geological Society of China, 24(3-4): 245-258.
Google Scholar
|
[56] |
Tinkler K J. 1972. The superimposition hypothesis for incised meanders: a general rejection and specific test [J]. Area,4(2): 86-91.
Google Scholar
|
[57] |
Torrence C, Compo G P. 1998. A practical guide to wavelet analysis [J]. Bulletin of the American Meteorological Society, 79(1): 61-78.
Google Scholar
|
[58] |
Wang P, Zheng H B, Liu S F. 2013. Geomorphic constraints on middle Yangtze River reversal in eastern Sichuan Basin, China [J]. Journal of Asian Earth Sciences, 69(6): 70-85.
Google Scholar
|
[59] |
Willis B, Blackwelder E, Sargent R H, Hirth F, Walcott C D, Weller S, Girty G H. 1907. Research in China Vol. II: Systematic geology[M]. Carnegie Institution ofWashington.
Google Scholar
|
[60] |
Winslow A. 1893. The Osage River and its meanders[J]. Science, 22(546): 31-32.
Google Scholar
|
[61] |
Yih L, Xie J. 1925. Geologic structure and physiographic history of the Yangtze valley below Wushan[J]. Bulletin of the Geological Society of China, 5: 87-109.
Google Scholar
|
[62] |
Zheng H B, Clift P D, Wang P, Tada R, Jian J T, He M Y, Jourdan F. 2013. Pre-miocene birth of the Yangtze River [J]. Proceedings of the National Academy of Sciences, 110(19): 7556-7561.
Google Scholar
|