[1] |
曹 珂. 2013. 中国陆相白垩系地层对比[J].地质论评,59(1):24-40.
Google Scholar
|
[2] |
陈家驹,徐先兵,梁承华,徐亚东. 2021. 湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义[J].地球科学,46(10):3421-3434.
Google Scholar
|
[3] |
陈丕基. 2000. 中国陆相侏罗、白垩系划分对比述评[J].地层学杂志, 24(2):114-119.
Google Scholar
|
[4] |
董月霞,肖龙,周海民,曾广策,王方正,王旭东,向 华,赵太平,柳小明. 2006. 广东三水盆地双峰式火山岩:空间展布、岩石学特征及其盆地动力学意义[J].大地构造与成矿学, 30(1):82-92.
Google Scholar
|
[5] |
广东省地质调查院. 2017. 中国区域地质志·广东志[M].北京: 地质出版社.
Google Scholar
|
[6] |
湖南省地质调查院. 2017. 中国区域地质志·湖南志[M].北京: 地质出版社.
Google Scholar
|
[7] |
华琛. 2020. 粤北丹霞盆地晚侏罗世早期火山岩成因及地球动力学机制[D].东华理工大学硕士学位论文.
Google Scholar
|
[8] |
黄乐清,黄建中,罗 来,王先辉,刘耀荣,梁恩云,马慧英. 2019. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义[J].沉积学报,37(4):735-748.
Google Scholar
|
[9] |
贾 磊. 2016. 三水盆地与茂名盆地白垩系构造沉积特征及其对古南海俯冲的响应[D].中国地质大学(北京)硕士学位论文.
Google Scholar
|
[10] |
贾小辉,王晓地,杨文强,牛志军. 2014. 粤北雪山嶂A型花岗岩的形成时代、地球化学特征及其成因[J].矿物岩石,34(3):40-49.
Google Scholar
|
[11] |
江西省地质调查研究院. 2017. 中国区域地质志·江西志[M].北京: 地质出版社.
Google Scholar
|
[12] |
李出安,邹和平. 2011. 广东南雄断裂带Ar-Ar年龄及其地质意义[J].中山大学学报(自然科学版),50(1):129-132.
Google Scholar
|
[13] |
李四光. 1942. 南嶺何在[J]. 地质论评, 7(6): 253-265+395.
Google Scholar
|
[14] |
梁承华,徐先兵,李启铭,桂 林,汤 帅. 2019. 江南东段地区NE-SW向断裂带断层滑移矢量反演及其大地构造意义[J].地球科学,44(5):1761-1772.
Google Scholar
|
[15] |
刘 玲,李祥辉,王 尹,周 勇,曹 珂. 2012. 浙闽地区白垩纪早中期黏土矿物组成特征及其古气候显示[J].沉积学报,30(1):120-127.
Google Scholar
|
[16] |
刘成林,余小灿,赵艳军,王九一,王立成,徐海明,李坚,王春连. 2016. 华南陆块液体钾、锂资源的区域成矿背景与成矿作用初探[J].矿床地质,35(6):1119-1143.
Google Scholar
|
[17] |
娄 峰,于玉帅,林碧美,陈洪仁,周永洪,周梅林. 2020.广东河源断裂带基性岩脉时代及其与铀成矿关系[J]. 华南地质,36(2):117-128.
Google Scholar
|
[18] |
马铁球,闫全人,陈辉明,向忠金,周柯军,李 彬. 2012. 湖南攸县新市玄武岩锆石LA-ICP-MS U-Pb定年及其地球化学特征[J].华南地质与矿产, 28(4):340-349.
Google Scholar
|
[19] |
沈鹏飞. 2014. 南雄—丹霞盆地白垩纪沉积序列演化特征及其对南海构造转换的响应[D].中国地质大学(北京)博士学位论文.
Google Scholar
|
[20] |
舒良树,邓 平,王 彬,谭正中,余心起,孙 岩. 2004. 南雄-诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约[J].中国科学(D辑:地球科学), 34(1):1-13.
Google Scholar
|
[21] |
舒良树, 周新民, 邓 平, 余心起. 2006. 南岭构造带的基本地质特征[J]. 地质论评, 52(2): 251–265.
Google Scholar
|
[22] |
宋博文,张克信,徐亚东,侯亚飞,季军良,骆满生. 2020. 中国古近纪构造-地层区划及地层格架[J].地球科学,45(12):4352-4369.
Google Scholar
|
[23] |
童永生,李 茜,王元青. 2013.中国早古近纪陆相地层划分框架研究[J].地层学杂志,37(4):428-440.
Google Scholar
|
[24] |
童永生,李曼英,李 茜. 2002. 广东南雄盆地白垩系—古近系界线[J].地质通报, 21(10):668-674.
Google Scholar
|
[25] |
王 瑞, 姜宝玉. 2021. 中国晚白垩世古水系展布及其对鸭嘴龙类分布的影响[J].古地理学报,23(3):581-599.
Google Scholar
|
[26] |
王九一,刘成林,王春连,余小灿,颜开,高超. 2021. 晚白垩世—古近纪华南蒸发岩矿床形成的构造和气候耦合控制[J].地质学报,95(7):2041-2051.
Google Scholar
|
[27] |
王岳军,廖超林,范蔚茗,彭头平.2004. 赣中地区早中生代OIB碱性玄武岩的厘定及构造意义[J].地球化学, 33(2):109-117.
Google Scholar
|
[28] |
巫建华,徐勋胜,刘帅. 2012. 赣南-粤北地区晚白垩世早期长英质火山岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质通报,31(8):1296-1305.
Google Scholar
|
[29] |
席党鹏,孙立新,覃祚焕,李国彪,李罡,万晓樵. 2021. 中国白垩纪岩石地层划分和对比[J].地层学杂志,45(3):375-401.
Google Scholar
|
[30] |
席党鹏,万晓樵,李国彪,李罡. 2019. 中国白垩纪综合地层和时间框架[J].中国科学: 地球科学,49(1):257-288.
Google Scholar
|
[31] |
夏 元, 徐先兵, 陈家驹. 2022. 华南鹰扬关构造带的大地构造属性与构造演化过程: 基于构造解析的认识[J]. 地质论评,68(6):2006-2020.
Google Scholar
|
[32] |
徐先兵,张岳桥,贾东,舒良树,王瑞瑞. 2009. 华南早中生代大地构造过程[J].中国地质,36(3):573-593.
Google Scholar
|
[33] |
徐先兵. 2011. 武夷山地区显生宙构造变形与年代学研究[D].南京大学博士学位论文.
Google Scholar
|
[34] |
徐先兵,梁承华,陈家驹,徐亚东. 2021. 南岭构造带基础地质特征与成矿地质背景[J].地球科学,46(4):1133-1150.
Google Scholar
|
[35] |
杨庆坤,刘富军,华琛,陈律,陈光剑,陈留勤. 2020. 粤北丹霞盆地晚白垩世丹霞组风成砂岩物源特征及古气候意义[J].干旱区资源与环境,34(6):73-80.
Google Scholar
|
[36] |
余心起,舒良树,邓平,王彬,祖辅平. 2003. 中国东南部侏罗纪—第三纪陆相地层沉积特征[J].地层学杂志, 27(3):254-263.
Google Scholar
|
[37] |
余心起,舒良树,邓国辉,王彬,祖辅平. 2005. 江西吉泰盆地碱性玄武岩的地球化学特征及其构造意义[J].现代地质, 19(1):133-140.
Google Scholar
|
[38] |
袁晓博, 方念乔. 2019. 三水盆地中渐新世火山记录的新建与南海扩张[J].地质通报,38(4):689-695.
Google Scholar
|
[39] |
张显球, 李罡,黎汉明. 2006. 广东南雄盆地南雄群的介形类动物群[J].微体古生物学报, 23(2):115-153.
Google Scholar
|
[40] |
张显球, 张喜满,侯明才,李罡,黎汉明. 2013. 南雄盆地红层岩石地层划分[J].地层学杂志,37(4):441-451.
Google Scholar
|
[41] |
张显球,林小燕. 2013.粤北丹霞盆地白垩系长坝组的介形类动物群[J].微体古生物学报,30(1):58-86.
Google Scholar
|
[42] |
张显球. 1992. 丹霞盆地白垩系的划分与对比[J].地层学杂志, 16(2):81-95.
Google Scholar
|
[43] |
张显球.1999. 广东省白垩—第三纪盆地地质概况[J]. 广东地质, 14(3): 53-57.
Google Scholar
|
[44] |
张族坤,徐亚军,刘强,杨坤光,杜远生. 2019. 华南东部白垩纪晚期-古近纪构造转换的沉积记录——以粤北南雄盆地为例[J].大地构造与成矿学,43(3):575-589.
Google Scholar
|
[45] |
钟志菲,巫建华. 2015. 江西会昌盆地埃达克质粗面岩年代学、地球化学与成因研究[J].东华理工大学学报(自然科学版),38(2):167-175.
Google Scholar
|
[46] |
Cao L C, Shao L, Qiao P J, Zhao Z G,van Hinsbergen D J. 2018. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau[J]. Earth and Planetary Science Letters, 496: 120-131.
Google Scholar
|
[47] |
Cao S, Zhang L M, Wang C S, Ma J, Tan J,Zhang Z H.2020. Sedimentological characteristics and aeolian architecture of a plausible intermountain erg system in Southeast China during the Late Cretaceous[J]. Geological Society of America Bulletin, 132(11-12): 2475-2488.
Google Scholar
|
[48] |
Chen C H, Lee C Y, Shinjo R. 2008. Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 106(1-2): 83-92.
Google Scholar
|
[49] |
Chen L Q, Steel R J, Guo F S, Olariu C,Gong C L. 2017. Alluvial fan facies of the Yongchong Basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China[J]. Journal of Asian Earth Sciences, 134: 37-54.
Google Scholar
|
[50] |
Chen P R, Hua R M, Zhang B T, Lu J J,Fan C F. 2002. Early Yanshanian post-orogenic granitoids in the Nanling region—Petrological constraints and geodynamic settings [J]. Science in China Series D: Earth Sciences, 45(8): 755-768.
Google Scholar
|
[51] |
Chen Y, Meng J, Liu H, Wang C S, Tang M, Liu T,Zhao Y N. 2022. Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin[J]. Basin Research, 34(2): 688-701.
Google Scholar
|
[52] |
Chen Z L, Ding Z L, Yang S L, Zhang C X, Wang X. 2016. Increased precipitation and weathering across the Paleocene-Eocene Thermal Maximum in central China[J]. Geochemistry, Geophysics, Geosystems, 17(6): 2286-2297.
Google Scholar
|
[53] |
Chu Y, Lin W, Faure M, Allen M B,Feng Z T. 2020. Cretaceous exhumation of the Triassic intracontinental Xuefengshan Belt: Delayed unroofing of an orogenic plateau across the South China Block?[J]. Tectonophysics, 793: 228592.
Google Scholar
|
[54] |
Chung S L, Cheng H, Jahn B M, O'Reilly S Y, Zhu B Q. 1997. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening[J]. Lithos, 40(2-4): 203-220.
Google Scholar
|
[55] |
Clyde W C, Ting S Y, Snell K E, Bowen G J, Tong Y S, Koch P L, Li Q, Wang Y Q. 2010. New paleomagnetic and stable-isotope results from the Nanxiong Basin, China: Implications for the K/T boundary and the timing of Paleocene mammalian turnover[J]. The Journal of Geology, 118(2): 131-143.
Google Scholar
|
[56] |
Cukur D, Horozal S, Lee G H, Kim D C,Han H C. 2012. Timing of trap formation and petroleum generation in the northern East China Sea Shelf Basin[J]. Marine and Petroleum Geology, 36(1):154-163.
Google Scholar
|
[57] |
He M Y, Zheng H B, Clift P D. 2013. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 360: 186-203.
Google Scholar
|
[58] |
He Z Y, Xu X S, Niu Y L. 2010. Petrogenesis and tectonic significance of a Mesozoic granite–syenite–gabbro association from inland South China[J]. Lithos, 119(3-4): 621-641.
Google Scholar
|
[59] |
Huang D Y, Su Y T, Lian X N, Gao J. 2022. Fossil caddis cases from the lower Eocene Huachong Formation of the Sanshui Basin, Foshan City, Guangdong Province, South China with detrital zircon analyses[J]. Palaeoentomology, 5(2): 105-112.
Google Scholar
|
[60] |
Lee T Y, Lawver L A. 1994. Cenozoic plate reconstruction of the South China Sea region[J]. Tectonophysics, 235(1-2): 149-180.
Google Scholar
|
[61] |
Li J H, Zhang Y Q, Dong S W, Li H L. 2012. Late Mesozoic-Early Cenozoic deformation history of the Yuanma Basin, central South China [J]. Tectonophysics, 570–571: 163-183.
Google Scholar
|
[62] |
Li J H, Zhang Y Q, Dong S W, Su J B, Li Y, Cui J J,Shi W. 2013. The Hengshan low-angle normal fault zone: Structural and geochronological constraints on the Late Mesozoic crustal extension in South China[J]. Tectonophysics, 606: 97-115.
Google Scholar
|
[63] |
Li J H, Ma Z L, Zhang Y Q, Dong S W, Li Y, Lu M A,Tan J Q.2014a. Tectonic evolution of Cretaceous extensional basins in Zhejiang Province, eastern South China: Structural and geochronological constraints[J]. International Geology Review, 56(13): 1602-1629.
Google Scholar
|
[64] |
Li J H, Zhang Y Q, Dong S W,Johnston S T. 2014b. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. EarthScience Reviews, 134(1): 98-136.
Google Scholar
|
[65] |
Li J H, Shi W, Zhang Y Q, Dong S W, Ma Z L. 2016. Thermal evolution of the Hengshan extensional dome in central South China and its tectonic implications: New insights into low-angle detachment formation[J]. Gondwana Research, 35(1): 425-441.
Google Scholar
|
[66] |
Li J H, Dong S W, Cawood P A, Zhao G C, Johnston S T, Zhang Y Q,Xin Y J. 2018. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 490(1): 170-179.
Google Scholar
|
[67] |
Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179-182.
Google Scholar
|
[68] |
Lin W,Wei W. 2020. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: a review and synthesis[J]. International Geology Review, 62(7-8): 811-839.
Google Scholar
|
[69] |
Ma M M, Liu X M,Wang W Y. 2018. Palaeoclimate evolution across the Cretaceous–Palaeogene boundary in the Nanxiong Basin (SE China) recorded by red strata and its correlation with marine records[J]. Climate of the Past, 14(3): 287-302.
Google Scholar
|
[70] |
Meng L F, Li Z X, Chen H L, Li X H,Wang X C. 2012. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model[J]. Lithos, 132-133: 127-140.
Google Scholar
|
[71] |
Meng L F, Li Z X, Chen H L, Li X H,Zhu C. 2015. Detrital zircon U–Pb geochronology, Hf isotopes and geochemistry constraints on crustal growth and Mesozoic tectonics of southeastern China[J]. Journal of Asian Earth Sciences, 105: 286-299.
Google Scholar
|
[72] |
Ren J Y, Tamaki K, Li S T,Junxia Z. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344(3-4): 175-205.
Google Scholar
|
[73] |
Röhl U, Westerhold T, Bralower T J, Zachos J C. 2007. On the duration of the Paleocene-Eocene thermal maximum (PETM)[J]. Geochemistry, Geophysics, Geosystems, 8(12): 1-13.
Google Scholar
|
[74] |
Shu L S, Zhou X M, Deng P, Wang B, Jiang S Y, Yu J H, Zhao X X. 2009. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis [J]. Journal of Asian Earth Sciences, 34: 376-391.
Google Scholar
|
[75] |
Tao N, Li Z X, Danišík M, Evans N J, Batt G E, Li W X, Pang C J, Jourdan F, Xu Y G, Liu L P. 2017. Thermochronological record of Middle–Late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block[J]. Gondwana Research, 46(1): 191-203.
Google Scholar
|
[76] |
Tao N, Li Z X, Danišík M, Evans N J, Li R X, Pang C J, Li WX, Jourdan F, Yu Q, Liu LP, Batt G E, Xu Y G. 2019. Post-250 Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-Western Pacific margin[J]. Gondwana Research, 75: 1-15.
Google Scholar
|
[77] |
Ting S Y, Bowen G J, Koch P L, Clyde W C, Wang Y Q, Wang Y, McKenna M C. 2003. Biostratigraphic, chemostratigraphic, and magnetostratigraphic study across the Paleocene-Eocene boundary in the Hengyang Basin, Hunan, China[J]. Special Papers of the Geological Society of America, 369: 521-535.
Google Scholar
|
[78] |
Wang D Z, Shu L S. 2012. Late Mesozoic basin and range tectonics and related magmatism in Southeast China[J]. Geoscience Frontiers, 3(2): 109-124.
Google Scholar
|
[79] |
Wang J, Yuan Y J, Zhang D X, Chang S C. 2022. Detrital zircon geochronology of Late Cretaceous successions in the Ganzhou Basin, South China: evidence of a major tectonic transition[J]. Geological Society, London, Special Publications, 521: 1-12.
Google Scholar
|
[80] |
Wang Q M, Li H L, Li T D, Ding X Z, Zhen J W, Zhang M,Fan Y X. 2022. Two-episode Tectono‐thermal Events of the Heyuan Fault in Late Cretaceous and Oligocene and their Tectonic Implications, Southernmost South China Block[J]. Acta Geologica Sinica (English Edition),96(2): 447-459.
Google Scholar
|
[81] |
Wang Y J, Fan W M, Guo F, Peng T P,Li C W. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: implications for the lithospheric boundary between the Yangtze and Cathaysia blocks[J]. International Geology Review, 45(3), 263-286.Wang Y Q, Li Q, Bai B, Jin X, Mao F Y,Meng J. 2019. Paleogene integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 62(1): 287-309.Wang Y, Wang Y J, Li S B, Seagren E, Zhang Y Z, Zhang P Z, Qian X. 2020. Exhumation and landscape evolution in eastern South China since the Cretaceous: New insights from fission-track thermochronology[J]. Journal of Asian Earth Sciences, 191: 104239.Xie Y L, Wu F L, Fang X M, Zhang D W, Zhang W L.2020. Early Eocene southern China dominated by desert: Evidence from a palynological record of the Hengyang Basin, Hunan Province[J]. Global and Planetary Change, 195: 103320.Xu X B, Zhang Y Q, Jia D, Shu L S. 2011. U-Pb Dating of volcanic rocks and granites along the Wuyishan belt: constraints on timing of late Mesozoic tectonic events in southeast China[J]. Acta Geologica Sinica(English Edition), 85(1): 130-144.Xu X B, Tang S,Lin S F.2016. Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China[J]. Journal of Geodynamics, 98: 31-52.Xu X B, Liang C H, Chen J J,Xu Y D.2021a. Provenance analysis of Jurassic basins along Chaling–Chenzhou–Linwu Fault, South China: Implications for palaeogeographic reconstruction and Mesozoic tectonic transition[J]. Geological Journal, 56(5): 2656-2675.Xu X B, Liang C H,Xu Y D.2021b. Kinematic analysis of fault-slip data in the Nanling area and Cretaceous to Paleogene tectonic evolution of the Central South China Block[J]. Journal of Asian Earth Sciences, 221: 104951.Xu X S, O'Reilly S Y, Griffin W L, Deng P, Pearson N J. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting[J]. Tectonics, 24(2): 1-17.Yan Y, Hu X Q, Lin G, Santosh M,Chan L S.2011. Sedimentary provenance of the Hengyang and Mayang basins, SE China, and implications for the Mesozoic topographic change in South China Craton: Evidence from detrital zircon geochronology[J]. Journal of Asian Earth Sciences, 41(6): 494-503.Ye Q, Mei L F, Shi H S, Du J Y, Deng P, Shu Y, Camanni G. 2020. The influence of pre-existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin[J]. Tectonics, 39(3): e2019TC005845.Yu X C, Wang C L, Bertolini G, Liu C L,Wang J Y.2021. Damp-to dry aeolian systems: Sedimentology, climate forcing, and aeolian accumulation in the Late Cretaceous Liyou Basin, South China[J]. Sedimentary Geology, 426: 106030.Zhao M T, Ma M M, He M, Qiu Y D, Liu X M.2021. Evaluation of the four potential Cretaceous-Paleogene (K-Pg) boundaries in the Nanxiong Basin based on evidences from volcanic activity and paleoclimatic evolution[J]. Science China: Earth Sciences, 64(4): 631-641.Zheng H B, Clift P D, Wang P, Tada R J, Jia J T, He M Y, Jourdan F. 2013. Pre-miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 110(19): 7556-7561.Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L.2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33.Zhou H M, Xiao L, Dong Y X, Wang C Z, Wang F Z,Ni P Z.2009. Geochemical and geochronological study of the Sanshui basin bimodal volcanic rock suite, China: implications for basin dynamics in southeastern China[J]. Journal of Asian Earth Sciences, 34(2): 178-189.Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3-4): 269-287.Zhu B Q, Wang H F, Chen Y W, Chang X Y, Hu Y G, Xie J. 2004. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia[J]. Journal of Asian Earth Sciences, 24(2): 163-175.
Google Scholar
|