| [1] |
程顺波,刘阿睢,李荣志,韦义师,刘君豪,胥 明.2020.桂西二叠纪喀斯特型铝土矿豆鲕特征及成因[J]华南地质,36(3): 232-239.
Google Scholar
|
| [2] |
程顺波,刘阿睢,崔 森,李荣志,韦义师.2021.桂西二叠纪喀斯特型铝土矿地质成矿过程[J].地球科学,46(8):2697-2710.
Google Scholar
|
| [3] |
戴塔根,龙永珍,张起钻,胡 斌.2003.桂西某些铝土矿床稀土元素地球化学研究[J].地质与勘探,39(4):1-5.
Google Scholar
|
| [4] |
戴塔根,龙永珍,张起钻,胡 斌.2007.桂西铝多金属矿床地质地球化学特征与成矿机理[J].地球科学与环境学报, 29(4): 345-350.
Google Scholar
|
| [5] |
杜远生,黄 虎,杨江海,黄宏伟,陶 平,黄志强,胡丽沙,谢春霞.2013.晚古生代—中三叠世右江盆地的格局和转换[J].地质论评,59(1): 1-11.
Google Scholar
|
| [6] |
范长智.1995.平果岩溶堆积型铝土矿及原生铝土矿矿床地质征及其成因[J].矿山地质, 16(1): 18-26.
Google Scholar
|
| [7] |
广西地质矿产勘查局.1985.广西壮族自治区区域地质志[M].北京:地质出版社,212-241.
Google Scholar
|
| [8] |
广西区域地质调查研究院.2016.广西壮族自治区区域地质志(第二册):沉积岩及沉积作用[R].822-1053.
Google Scholar
|
| [9] |
侯莹铃,何 斌,钟玉婷.2014.桂西二叠系喀斯特型铝土矿成矿物质来源的新认识:来自合山组碎屑岩地球化学证据[J].大地构造与成矿学, 38(1):181-196.
Google Scholar
|
| [10] |
李龚健,王庆飞,禹 丽,胡兆初,马 楠,黄钰涵.2013.哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约[J].岩石学报, 29(11):3883-3900.
Google Scholar
|
| [11] |
李朋武, 高 锐, 管 烨, 李秋生.2009.古特提斯洋的闭合时代的古地磁分析:松潘复理石杂岩形成的构造背景[J].地球学报,30(1): 39-50.
Google Scholar
|
| [12] |
李普涛,张起钻.2008.广西靖西县三合铝土矿稀土元素地球化学研究[J].矿产与地质,22(6):536-540.
Google Scholar
|
| [13] |
廖思福.2000.平果岩溶堆积型铝土矿地质特征及成因探讨[J].广西地质,13(4):29-33.
Google Scholar
|
| [14] |
刘长龄.1992.论铝土矿的成因学说[J].河北地质学院学报, 15(2): 195-204.
Google Scholar
|
| [15] |
乔 龙. 2016.右江盆地及其周缘地区构造演化及铝土矿成矿作用[D].中国地质大学(北京)博士学位论文, 1-164.
Google Scholar
|
| [16] |
秦建华,吴应林,颜仰基,朱忠发.1996.南盘江盆地海西-印支期沉积构造演化[J].地质学报,70(2): 99-107.
Google Scholar
|
| [17] |
王 力,龙永珍,彭省临.2004.桂西铝土矿成矿物质来源的地质地球化学分析[J].桂林工学院学报,24(1):1-6.
Google Scholar
|
| [18] |
王庆飞,邓 军,刘学飞,张起钻,李中明,康 微,蔡书慧,李 宁.2012.铝土矿地质与成因研究进展[J].地质与勘探, 48(3): 430-448.
Google Scholar
|
| [19] |
吴福元,李献华,郑永飞,高 山.2007. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220.
Google Scholar
|
| [20] |
杨宗永,何 斌.2012.南盘江盆地中三叠统碎屑锆石地质年代学:物源及其地质意义[J].大地构造与成矿学,36(4):581-596.
Google Scholar
|
| [21] |
张起钻.2011.桂西铝土矿成矿模式和勘查技术[D].中国地质大学(北京)博士学位论文,1-141.
Google Scholar
|
| [22] |
Bardossy G. 1982. Karst bauxites: Bauxite deposits on carbonate rock [M]. Amsterdam: Elsevier, 20-180.
Google Scholar
|
| [23] |
Brimhall G H, Lewis C J, Ague J J, Dietrich W E, Hampel J, Teague T, Rix P. 1988. Metal enrichment in auxites by deposition of chemically mature aeolian dust [J]. Nature, 333: 819-824.
Google Scholar
|
| [24] |
Deng J, Wang Q F, Yang S J, Liu X F, Zhang Q Z. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores [J]. Journal of Asian Earth Sciences, 37: 412-424.
Google Scholar
|
| [25] |
Hou Y L, Zhong Y T, Xu Y G, He B. 2017. The provenance of late Permian karstic bauxite deposits in SW China, constrained by the geochemistry of interbedded clastic rocks, and U-Pb-Hf-O isotopes of detrital zircons [J]. Lithos, 278-281: 240-254.
Google Scholar
|
| [26] |
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 257: 34-43.
Google Scholar
|
| [27] |
Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley Geochronology Center, California, Berkeley, 1-39.
Google Scholar
|
| [28] |
MacLean W H, Bonavia F F, Sanna G. 1997. Argillite debris converted to bauxite during karst weathering: Evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia [J]. Mineralium Deposita, 32: 607-616.
Google Scholar
|
| [29] |
MacLean W, Kranidiotis P. 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec [J]. Economical Geology, 82(4): 951-962.
Google Scholar
|
| [30] |
Mameli P, Mongelli G, Oggiano G, Dinelli E. 2007. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): Insights on conditions of formation and parental affinity [J]. International Journal of Earth Sciences, 96: 887-902.
Google Scholar
|
| [31] |
Mongelli G. 1993. REE and other trace elements in a granitic weathering profile from “Serre”, southern Italy [J]. Chemical Geology, 103: 17-25.
Google Scholar
|
| [32] |
Morelli F, Cullers R, Laviano R and Mongelli G. 2000. Geochemistry and palaeo-environmental significance of Upper Cretaceous clay-rich beds from the Peri-Adriatic Apulia Carbonate Platform, southern Italy [J]. Periodico di Mineralogia, 69:165-183.
Google Scholar
|
| [33] |
Ozlü N. 1985. New facts on diaspore genesis in the Akseki-Seydisehir bauxite deposit (Western Taures, Turkey) [J]. Travaux Du ICSOBA, 14-15:53-62.
Google Scholar
|
| [34] |
Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism [J]. Chemical Geology, 184: 123-138.
Google Scholar
|
| [35] |
Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions [J]. Earth and Planetary Science Letters, 219 (3-4): 311-324.
Google Scholar
|
| [36] |
Yu W C, Algeo T J, Du Y S, Zhang Q L, Liang Y P. 2016. Mixed volcanogenic-lithogenic sources for Permian bauxite deposits in Southwestern Youjiang basin, South China, and their metallogenic significance [J]. Sedimentary Geology, 341: 276-288.
Google Scholar
|
| [37] |
Zhong Y T, He B, Xu Y G. 2013. Mineralogy and geochemistry of claystones from the Guadalupian-Lopingian boundary at Penglaitan, South China: Insights into the pre-Lopingian geological events[J]. Journal of Asian Earth Sciences, 62: 438-462.
Google Scholar
|