2022 Vol. 38, No. 3
Article Contents

ZHOULi-Tong, CHENJian-Feng, DUYun, LUWen, SHIJin-Jiang. 2022. Monazite U-Pb Geochronology of Granites in the Shaping Tungsten Deposit, Western Nanling Metallogenic Belt and Its Geological Significance. South China Geology, 38(3): 486-495. doi: 10.3969/j.issn.2097-0013.2022.03.010
Citation: ZHOULi-Tong, CHENJian-Feng, DUYun, LUWen, SHIJin-Jiang. 2022. Monazite U-Pb Geochronology of Granites in the Shaping Tungsten Deposit, Western Nanling Metallogenic Belt and Its Geological Significance. South China Geology, 38(3): 486-495. doi: 10.3969/j.issn.2097-0013.2022.03.010

Monazite U-Pb Geochronology of Granites in the Shaping Tungsten Deposit, Western Nanling Metallogenic Belt and Its Geological Significance

More Information
  • Corresponding author: CHENJian-Feng  
  • The Shaping Tungsten deposit, situated in the northwestern part of the Miao’ershan granite batholith, Western Nanling Metallogenic Belt, occurs in the late granite intrusion stock of fine two-mica monzogranite. The ore-bearing granite stock is almost wholly W-mineralized. In this study, LA-ICP-MS monazite U-Pb isotopic dating was performed on the fine two-mica monzogranite samples to determine the ages of diagenesis and mineralization. The monazite U-Pb analysis yielded the 206Pb/238U ages of 405.0±2.1Ma, suggesting that the Shaping W deposit was formed in Late Caledonian. Our new dating results, combined with previously published ages, indicate that the W-polymetallic mineralization ages in the northwestern part of the Miao’ershan granite batholith should be between around 430 Ma to 405 Ma. The Caledonian granite in this area has experienced significant magmatic differentiation and contributed to the W enrichment, which could be the metal source for the later fine two-mica monzogranite of the Shaping deposit. The northern of the Miao’ershan batholith has great prospecting potential for Caledonian W-polymetallic deposit.
  • 加载中
  • [1] 柏道远,钟 响,贾朋远,熊 雄,黄文义.2014.南岭西段加里东期苗儿山岩体锆石SHRIMP U-Pb年龄、地球化学特征及其构造意义[J].岩石矿物学杂志,33(3):407-423.

    Google Scholar

    [2] 蔡明海,陈开旭,屈文俊,刘国庆,付建明,印建平.2006.湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年[J].矿床地质,25(3):263-268.

    Google Scholar

    [3] 陈 骏,陆建军,陈卫锋,王汝成,马东升,朱金初,张文兰,季峻峰.2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4):459-473.

    Google Scholar

    [4] 陈懋弘,莫次生,黄智忠,李 斌,黄宏伟.2011.广西苍梧县社垌钨钼矿床花岗岩类锆石LA-ICP-MS和辉钼矿Re-Os年龄及其地质意义[J].矿床地质,30(6):963-978.

    Google Scholar

    [5] 陈懋弘,郭云起,梁 宾,黄宏伟.2012.广西苍梧县武界钨钼矿点成岩成矿年龄及岩体地球化学特征[J].桂林理工大学学报,32(1):1-13.

    Google Scholar

    [6] 程顺波,付建明,马丽艳,蒋桂新,陈希清,卢友月,童喜润.2013.桂东北越城岭–苗儿山地区印支期成矿作用:油麻岭和界牌矿区成矿花岗岩锆石U-Pb年龄和Hf同位素制约[J].中国地质,40(4):1189-1201.

    Google Scholar

    [7] 程顺波,付建明,马丽艳,卢友月,寇晓虎,张利国,黄惠兰.2016.桂东北越城岭岩体加里东期成岩作用:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].大地构造与成矿学,40(4):853-872.

    Google Scholar

    [8] 杜 云,罗小亚,黄革非,田 磊,王敬元,周立同.2017.湘西南苗儿山岩体北段印支期花岗岩成因:来自地球化学、U-Pb年代学证据[J].华南地质与矿产,33(3):229-242.

    Google Scholar

    [9] 杜 云,田 磊,郑正福,陈剑锋,张小强,王敬元,周立同,樊 晖,李 超.2022.湘西南落家冲钨锡矿床加里东期成岩成矿年龄的测定:对华南多旋回构造-岩浆活动与成矿作用的启示[J].地质通报,41(5):886-902.

    Google Scholar

    [10] 郭春丽,刘泽坤.2021.华南地区加里东期花岗岩:成岩和成矿作用的地质与地球化学特征[J].地球科学与环境学报,43(6):927-961.

    Google Scholar

    [11] 华仁民,李光来,张文兰,胡东泉,陈培荣,陈卫锋,王旭东.2010.华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地质,29(1):9–23.

    Google Scholar

    [12] 华仁民,张文兰,陈培荣,翟 伟,李光来.2013.初论华南加里东花岗岩与大规模成矿作用的关系[J].高校地质学报,19(1):1–11.

    Google Scholar

    [13] 蒋少涌,赵葵东,姜 海,苏慧敏,熊索菲,熊伊曲,徐耀明,章 伟,朱律运.2020.中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J].科学通报,65(33):3730-3745.

    Google Scholar

    [14] 李文杰,梁金城,冯佐海,张桂林,陈懋弘,袁爱平.2006.桂东北地区几个加里东期花岗岩体的地球化学特征及其构造环境的判别[J].矿产与地质, 20(3):353-360.

    Google Scholar

    [15] 李晓峰,冯佐海,李容森,唐专红,屈文俊,李军朝.2006.华南志留纪钼的矿化:白石顶钼矿锆石SHRIMPU-Pb年龄和辉钼矿Re-Os年龄证据[J].矿床地质,28(4):403-412.

    Google Scholar

    [16] 刘善宝,王登红,陈毓川,李建康,应立娟,许建祥,曾载淋.2008.赣南崇义-大余-上犹矿集区不同类型含矿石英中白云母40Ar-39Ar年龄及其地质意义[J].地质学报,82(7):932-940.

    Google Scholar

    [17] 罗 鹏,陈 迪,杨 俊,凌跃新,罗 来.2021.湖南川口印支期花岗岩成因及与钨成矿关系[J].华南地质,37(3):247-264.

    Google Scholar

    [18] 彭能立,王先辉,杨 俊,陈 迪,罗 来,罗 鹏,刘天一.2017.湖南川口三角潭钨矿床中辉钼矿Re-Os同位素定年及其地质意义[J].矿床地质,36(3):1042-1414.

    Google Scholar

    [19] 田 磊,杜 云,邹 源,刘邦定,张小强,樊 晖.2021.湘西南苗儿山地区水系沉积物地球化学特征及找矿方向[J].华南地质,37(2):164-176.

    Google Scholar

    [20] 王登红,陈毓川,陈郑辉,刘善宝,许建祥,张家菁,曾载淋,陈富文,李华芹,郭春丽.2007.南岭地区矿产资源形势分析和找矿方向研究[J].地质学报,81(7):882-890.

    Google Scholar

    [21] 伍 静,梁华英,黄文婷,王春龙,孙卫东,孙亚莉,李 晶,莫济海,王秀璋.2012.桂东苗儿山-越城岭西部岩体和矿床同位素年龄及华南印支期成矿分析[J].科学通报,57(13):1126-1136.

    Google Scholar

    [22] 于玉帅,周 云,牛志军,安志辉,刘阿睢.2022.湖南彭公庙岩体地球化学特征、时代及钨锡成矿潜力[J].岩石矿物学杂志,41(4):695-713.

    Google Scholar

    [23] 谢桂青,毛景文,张长青,李 伟,宋世伟,章荣清.2021.华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J].地学前缘,20(5):252-270.

    Google Scholar

    [24] 杨 振,王汝成,张文兰,储著银,陈 骏,朱金初,章荣清.2014.桂北牛塘界加里东期花岗岩及其矽卡岩型钨成矿作用研究[J].中国科学:地球科学,44(7):1357-1373.

    Google Scholar

    [25] 袁顺达,侯可军,刘 敏.2010.安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义[J].岩石学报,23(3):797-808.

    Google Scholar

    [26] 袁顺达,张东亮,双 燕,杜安道,屈文俊.2012.湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义[J].岩石学报,28(1):27-38.

    Google Scholar

    [27] 袁顺达.2017.南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示[J].矿物岩石地球化学通报,36(5):736-749.

    Google Scholar

    [28] 张 迪,张文兰,王汝成,储著银,龚名文,蒋桂新.2015.桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用[J].地质论评,61(4):817-834.

    Google Scholar

    [29] 张 强,陆建军.2019.苗儿山-越城岭地区加里东期钨锡成矿作用[A].第九届全国成矿理论与找矿方法学术讨论会论文摘要集[C].53-54.

    Google Scholar

    [30] Chen J, Wang R C, Zhu J C, Lu J J, Ma D S. 2013. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China [J]. Science China: Earth Sciences, 56(12): 2045-2055.

    Google Scholar

    [31] Chen J F, Shen G D, Shao Y J, Zhang J X, Liu Z F, Wei H T, Yang Q D, Luo X Y, Du Y. 2019. Silurian S-type granite-related W-(Mo) mineralization in the Nanling Range, South China: A case study of the Pingtan W-(Mo) deposit [J]. Ore Geology Reviews, 107: 186-200.

    Google Scholar

    [32] Chen W D, Zhang W L, Wang R C, Chu Z Y, Xiao R, Zhang D, Che X D. 2016. A study on the Dushiling tungsten-copper deposit in the Miao’ershan-Yuechengling area, Northern Guangxi, China: Implications for variations in the mineralization of multi-aged composite granite plutons [J]. Science China: Earth Sciences, 59(11): 2121-2141.

    Google Scholar

    [33] Harrison T M, Catlos E J, Montel J M. 2002. U-Th-Pb dating of phosphate minerals [J]. Reviews in Mineralogy and Geochemistry, 48(1): 523-558.

    Google Scholar

    [34] Hu Z C, Zhang W, Liu Y S, Gao S, Li M, Zong K Q, Chen H H, Hu S H. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis [J]. Analytical Chemistry, 87(2): 1152-1157.

    Google Scholar

    [35] Li J D, Li X F, Xiao R. 2019. Multiple-stage tungsten mineralization in the Silurian Jiepai W skarn deposit, South China: Insights from cathodoluminescence images, trace elements, and fluid inclusions of scheelite [J]. Journal of Asian Earth Sciences, 181: 103898.

    Google Scholar

    [36] Li Q L, Li X H, Lan Z W, Guo C L, Yang Y N, Liu Y, Tang G Q. 2013. Monazite and xenotime U-Th-Pb geochronology by ion microprobe: dating highly fractionated granites at Xihuashan tungsten mine, SE China [J]. Contributions to Mineralogy and Petrology, 166: 65-80.

    Google Scholar

    [37] Liu P, Mao J W, Santosh M, Bao Z, Zeng X, Jia L H. 2018a. Geochronology and petrogenesis of the Early Cretaceous A-type granite from the Feie'shan W-Sn deposit in the eastern Guangdong Province, SE China: Implications for W-Sn mineralization and geodynamic setting [J]. Lithos, 300-301: 330-347.

    Google Scholar

    [38] Liu P, Mao J W, Santosh M, Xu L G, Zhang R Q, Jia L H. 2018b. The Xiling Sn deposit, eastern Guangdong Province, Southeast China: a new genetic model from 40Ar/39Ar muscovite and U-Pb cassiterite and zircon geochronology [J]. Economic Geology, 113 (2): 511-530.

    Google Scholar

    [39] Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 257(1-2): 34-43.

    Google Scholar

    [40] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths [J]. Journal of Petrology, 51(1-2): 537-571.

    Google Scholar

    [41] Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley Geochronology Center, California, Berkeley, 1-39.

    Google Scholar

    [42] Mao J W, Cheng Y B, Chen M H, Franco P. 2013. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings [J]. Mineralium Deposita, 48: 267-294.

    Google Scholar

    [43] Mao J W, Ouyang H G, Song S W, Santosh M, Yuan S D, Zhou Z H, Zheng W, Liu H, Liu P, Cheng Y B, Chen M H. 2019. Geology and metallogeny of tungsten and tin deposits in China [J]. Society of Economic Geologists, Inc. SEG Special Publications, 22:. 411-482.

    Google Scholar

    [44] Mao Z H, Cheng Y B, Liu J J, Yuan S D, Wu S H, Xiang X K, Luo X H. 2013. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxi Province, China [J]. Ore Geology Reviews, 53: 422-433.

    Google Scholar

    [45] Qin J H, Wang D H, Li C, Chen Y C, Cai F C. 2020. The molybdenite Re-Os isotope chronology, in situ scheelite and wolframite trace elements and Sr isotope characteristics of the Chuankou tungsten ore field, South China [J]. Ore Geology Reviews, 126:103756.

    Google Scholar

    [46] Seydoux-Guillaume A M, Paquette J L, Wiedenbeck M, Montel J M and Heinrich W. 2002. Experimental resetting of the U-Th-Pb systems in monazite [J]. Chemical Geology, 191: 165-181.

    Google Scholar

    [47] White L T, Ireland T R. 2012. High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations[J]. Chemical Geology, 306307: 78-91.

    Google Scholar

    [48] Yuan S D, Peng J T, Shen N P, Hu R Z, Dai T M. 2007. 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in Southern Hunan, China and its geological implications [J]. Acta Geologica Sinica, 81(2): 278-286.

    Google Scholar

    [49] Yuan S D, Peng J T, Hu R Z, Li H M, Shen N P, Zhang D L. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China) [J]. Mineralium Deposita, 43: 375-382.

    Google Scholar

    [50] Yuan S D, Peng J T, Hao S, Li H M, Geng J Z, Zhang D L. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: new constraints on the timing of tin–polymetallic mineralization [J]. Ore Geology Reviews, 43: 235-242.

    Google Scholar

    [51] Yuan S D, Williams-Jones A E, Mao J W, Zhao P L, Yan C, Zhang D L. 2018. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths [J]. Economic Geology, 113 (5): 1193-1208.

    Google Scholar

    [52] Yuan S D, Williams-Jones A E, Romer R F, Zhao P L, Mao J W. 2019. Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China [J]. Economic Geology, 114(5): 1005-1012.

    Google Scholar

    [53] Yuan Y B, Yuan S D, Mao J W, Zhao P L, Yan C, Zhao H J, Zhang D L, Shuang Y, Peng J T. 2018. Recognition of Late Jurrassic W-Sn mineralization and its exploration potential on the western margin of the Caledonian Guidong granite batholith, Nanling Range, South China: geochronological evidence from the Liuyuan Sn and Zhuyuanli W deposit [J]. Ore Geology Reviews, 93: 220-230.

    Google Scholar

    [54] Zhang R Q, Lu J J, Wang R C, Yang P, Zhu J C, Gao J F, Li C, Zhang W L, Guo W M. 2015. Constraints of in situ zircon and cassiterite U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area, Nanling Range, South China [J]. Ore Geology Reviews, 65: 1021-1042.

    Google Scholar

    [55] Zhao K D, Jiang S Y, Sun T, Chen W F, Ling H F, Chen P R. 2013. Zircon U-Pb dating, trace element and Sr-Nd-Hf isotope geochemistry of Paleozoic granites in the Miao'ershan-Yuechengling batholith, South China: Implication for petrogenesis and tectonic-magmatic evolution [J]. Journal of Asian Earth Sciences, 74: 244-264.

    Google Scholar

    [56] Zhao K D, Jiang S Y, Ling H F, Palmer M R. 2014. Reliablity of LA-ICP-MS U-Pb dating of zircons with high U concentrations: A case study from the U-bearing Douzhashan granite in South China [J]. Chemical Geology, 389: 110-121.

    Google Scholar

    [57] Zhao P L, Zajacz Z, Tsay A, Yuan S D. 2021a. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing [J]. Geochimica et Cosmochimica Acta, 316: 331-346.

    Google Scholar

    [58] Zhao P L, Chu X, Williams-Jones A, Mao J W, Yuan S D. 2021b. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces [J]. Geology, 50: 121-125.

    Google Scholar

    [59] Zhao Z, Zhao W W, Lu L, Wang H Y. 2018. Constraints of multiple dating of the Qingshan tungsten deposit on the Triassic W(-Sn) mineralization in the Nanling region, South China [J]. Ore Geology Reviews, 94: 46-57.

    Google Scholar

    [60] Zong K Q, Chen J Y, Hu Z C, Liu Y S, Li M, Fan H H, Meng Y N. 2015. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS [J]. Science China: Earth Sciences, 58:1731-1740.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(888) PDF downloads(166) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint