2021 Vol. 37, No. 2
Article Contents

LU Yuan-Fa|LI Wen-Xia. 2021. Calculation and Program Design for Pb-Sr-Nd-Hf Isotopic Parameters. South China Geology, 37(2): 233-245. doi: 10.3969/j.issn.2097-0013.2021.02.010
Citation: LU Yuan-Fa|LI Wen-Xia. 2021. Calculation and Program Design for Pb-Sr-Nd-Hf Isotopic Parameters. South China Geology, 37(2): 233-245. doi: 10.3969/j.issn.2097-0013.2021.02.010

Calculation and Program Design for Pb-Sr-Nd-Hf Isotopic Parameters

  • Pb, Sr, Nd and Hf isotopes are heavy stable isotopes of radioactive origin, and occurs no isotopic fractionation in geological process, so their isotopic compositions are only related to the source. Therefore, these isotopic compositions are important indicators of material source and tectonic setting, especially in the study of crust-mantle separation and interaction. Some geologists have not systematically studied the theory of isotopic geochemistry, and the calculation of the parameters of those isotopic compositions involves the relatively complex formula derivation, which inevitably leads to errors in data processing in the understanding of formulas and parameters. This paper introduced the related parameters of Pb, Sr, Nd and Hf isotopes, and the calculation formulas of these parameters. On this basis, a set of computer program is designed by using Excel VBA which is user-friendly, convenient, reliable.
  • 加载中
  • [1] 路远发. 南岭地区产于碳酸盐岩中铅锌矿床的成因[J].湖南地质, 1993,(1): 23-28.[br][2] Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model [J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221. [br][3] 朱炳泉. 矿石Pb 同位素三维空间拓扑图解用于地球化学省与矿种区划[J]. 地球化学,1993,(3): 209-216. [br][4] 常向阳, 朱炳泉. Pb 同位素三维空间拓扑投影与化探评价[J]. 地球学报, 1997, 18(S1): 182-184. [br][5] 常向阳, 朱炳泉, 邹 日. 铅同位素系统剖面化探与隐伏矿深度预测—— 以云南金平龙脖河铜矿为例[J].中国科学(D 辑), 2000,30(1): 33-39. [br][6] 陈江峰, 江博明. Nd、Sr、Pb 同位素示踪和中国东南大陆地壳演化[M].// 郑永飞(主编),化学地球动力学论文集,北京: 科学出版社, 1999:262-287. [br][7] Jacobsen S B. Isotopic Constraints on Crustal Growth and Recycling [J]. Earth and Planetary Science Letters, 1988, 90(3): 315-329. [br][8] Liew T C, Hofmann A W. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications From a Nd and Sr Isotopic Study[J]. Contributions to Mineralogy and Petrology, 1988, 98(2): 129-138. [br][9] 李献华, 赵振华, 桂训唐, 于津生. 华南前寒武纪地壳形成时代的Sm-Nd 和锆石U-Pb 同位素制约[J]. 地球化学, 1991,(3): 255-264. [br][10] 吴福元,李献华,郑永飞,高 山. Lu-Hf 同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. [br][11] Jaffey A H, Flynn K F, Glendenin L E, Bentley W C, Essling A M. Precision Measurement of Half-lives and Specific Activities of 235U and238U[J]. Physical Review C, 1971, 4(5): 1889-1906. [br][12] Steiger R, Jäger E. Subcommission on geochronology convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters,1977, 36(3): 359-362. [br][13] Cowan G A, Adler H H. The variability of the natural abundance of 235U[J]. Geochimica et Cosmochimica Acta, 1976, 40(12): 1487-1490. [br][14] Tatsumoto M, Knight R J, Allegre C J. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206[J]. Science, 1973, 180(4092): 1279-1283. [br][15] Depaolo D J. Implications of Correlated Nd and Sr Isotopic Variations for the Chemical Evolution of Crust and Mantle[J]. Earth and Planetary Science Letters, 1979, 43(2): 201-211. [br][16] Hans U, Kleine T, Bourdon B. Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited [J]. Earth and Planetary Science Letters, 2013, 374, 204-214. [br][17] Lugmair GW, Marti K. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle[J]. Earth and Planetary Science Letters, 1978, 39:349-357. [br][18] Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139-155. [br][19] Jahn B M, Condie K C. Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites[J]. Geochimica et Cosmochimica Acta, 1995, 59(11): 2239-2258. [br][20] Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. The 176Lu Decay Constant Determined By Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions [J]. Earth and Planetary Science Letters, 2004, 219(3-4): 311-324. [br][21] Blichert-Toft J, Albarède F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system [J]. Earth and Planetary Science Letters, 1997, 148: 243-258. [br][22] Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y, Shee S R. The Hf isotope composition of cratonic mantle: LAM-MCICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. [br][23] GERM. Geochemical Earth Reference Model[OL]. http://earthref.org/GERM/, 2001. [br][24] Griffin W L,Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X S, Zhou X M. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes[J]. Lithos, 2002, 61(3): 237-269. [br][25] 路远发. GeoKit:一个用VBA 构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. [br][26] 许继锋, 韩吟文. 秦岭古MORB 型岩石的高放射性成因铅同位素组成—— 特提斯型古洋幔存在的证据[J].中国科学(D 辑), 1996, 22(S1):34-41. [br][27] 高 庚, 徐兆文, 杨小男, 王云健, 张 军, 蒋少涌, 凌洪飞. 安徽铜陵白芒山辉石闪长岩体的成因:Sr-Nd-Pb-O同位素制约[J]. 南京大学学报( 自然科学版), 2006,42(3): 52-62. [br][28] 胡文洁, 田世洪, 杨竹森, 张兆卿. 拉萨地块西段中新世查加寺钾质火山岩岩石成因[J]. 矿床地质, 2012,31(4): 813-830. [br][29] 田世洪, 杨竹森, 侯增谦, 刘英超,宋玉财,王富春,薛万文. 青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd 同位素组成: 对成矿物质来源的指示[J]. 岩石学报, 2011,27(7): 2173-2183. [br][30] 朱弟成,莫宣学,王立全,赵志丹,牛耀龄,周长勇,杨岳衡. 西藏冈底斯东部察隅高分异I 型花岗岩的成因:锆石U-Pb 年代学、地球化学和Sr-Nd-Hf 同位素约束 [J].中国科学(D 辑),2009,39(7): 833-848. [br]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(545) PDF downloads(22) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint