Citation: | MENG Deyong, SUN Aihui, ZOU Jianjian. Test on Comprehensive Recovery of Chromium from a Foreign Nickel-cobalt Ore[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 184-188, 195. doi: 10.3969/j.issn.1000-6532.2025.02.026 |
A foreign nickel-cobalt ore contains 1.10% nickel and 0.11% cobalt, which mainly exists in cryptocrystalline clay minerals in the form of ion adsorption. The ore contains 3.96% Cr2O3, and chromium basically exists in the form of chromite, which has the value of comprehensive recovery. In view of the high content of nickel and cobalt in the ore, and in clay minerals in the form of adsorption, clay minerals are easily sloughed during the grinding process, resulting in nickel and cobalt are enriched to the fine particle level and chromium basically exists in the form of chromite. During the grinding process, chromite particles of varying sizes are produced. Combined with the characteristics of relatively large gravity, the technical idea of grading and classifying after ore grinding, recovery of coarse-grained chromite by gravity separation, and recovery of fine-grained chromite by flotation is proposed adopting the process of "cyclone classification - spiral chute roughing - shaking table cleaning - shaking table tailings flotation" and selecting high-efficiency chromite collector GC to enhance the recovery of fine-grained chromite. The results of the whole process study show that chromite concentrate with Cr2O3 grade of 46.30% and Cr2O3 recovery rate of 71.95% can be obtained. At the same time, the nickel-cobalt slurry with Cr2O3 content of only 1.16% was obtained, creating favorable conditions for subsequent metallurgical recovery of nickel-cobalt.
[1] | 《矿产资源综合利用手册》编委会. 矿产资源综合利用手册[M]. 北京: 地质出版社, 2012: 93-117, 294-302.Editorial Board of the Mineral Resources Comprehensive Utilization. Mineral resources industry requirements manual[M]. Beijing: Geological Publishing House, 2012: 93-117, 294-302. Editorial Board of the Mineral Resources Comprehensive Utilization. Mineral resources industry requirements manual[M]. Beijing: Geological Publishing House, 2012: 93-117, 294-302. |
[2] | 袁见齐, 朱上庆, 翟裕生. 矿床学[M]. 北京: 地质出版社, 1985: 16-32.YUAN J Q, ZHU S Q , ZHAI Y S. Mineral deposit science [M]. Beijing: Geological Publishing House, 1985: 16-32. YUAN J Q, ZHU S Q , ZHAI Y S. Mineral deposit science [M]. Beijing: Geological Publishing House, 1985: 16-32. |
[3] | 李强, 王成行, 胡真, 等. 磁选-重选-浮选强化回收微细粒铬铁矿新工艺研究[J]. 稀有金属, 2021, 45(11): 1359-1367.LI Q, WANG C H , HU Z, et al. New technology of enhanced recovery of fine-grained chromite by magnetic separation-gravity separation-flotation[J]. Chinese Journal of Rare Metals, 2021, 45(11): 1359-1367. LI Q, WANG C H , HU Z, et al. New technology of enhanced recovery of fine-grained chromite by magnetic separation-gravity separation-flotation[J]. Chinese Journal of Rare Metals, 2021, 45(11): 1359-1367. |
[4] | 李亮. 菲律宾某低品位难选铬铁矿选矿工艺研究[J]. 现代矿业, 2011, 27(09):5-10.LI L. Research of beneficiation process of a low-grade refractory chromite ore of Philippine[J]. Modern Mining, 2011, 27(09):5-10. doi: 10.3969/j.issn.1674-6082.2011.09.002 LI L. Research of beneficiation process of a low-grade refractory chromite ore of Philippine[J]. Modern Mining, 2011, 27(09):5-10. doi: 10.3969/j.issn.1674-6082.2011.09.002 |
[5] | 皇甫明柱, 胡义明, 袁风香. 国外某铬铁矿选矿试验[J]. 现代矿业, 2015, 31(09):50-53.HUANGFU M Z, HU Y M, YUAN F X. Beneficiation experiment on a chromite ore abroad[J]. Modern Mining, 2015, 31(09):50-53. doi: 10.3969/j.issn.1674-6082.2015.09.019 HUANGFU M Z, HU Y M, YUAN F X. Beneficiation experiment on a chromite ore abroad[J]. Modern Mining, 2015, 31(09):50-53. doi: 10.3969/j.issn.1674-6082.2015.09.019 |
[6] | 李淑菲, 李艳军, 韩跃新, 等. 红土镍矿深度还原-磁选富集镍铁工艺研究[J]. 金属矿山, 2011(03):66-68.LI S F, LI Y J, HAN Y X, et al. Research on nickel-iron enrichment process by deep reduction and magnetic separation of laterite-nickel ore[J]. Metal Mine, 2011(03):66-68. LI S F, LI Y J, HAN Y X, et al. Research on nickel-iron enrichment process by deep reduction and magnetic separation of laterite-nickel ore[J]. Metal Mine, 2011(03):66-68. |
[7] | 王亚琴, 李艳军, 张剑廷, 等. 红土镍矿深度还原-磁选试验研究[J]. 金属矿山, 2011(09):68-71+86.WANG Y Q, LI Y J, ZHANG J T, et al. Deep reduction-magnetic separation of laterite-nickel ore[J]. Metal Mine, 2011(09):68-71+86. WANG Y Q, LI Y J, ZHANG J T, et al. Deep reduction-magnetic separation of laterite-nickel ore[J]. Metal Mine, 2011(09):68-71+86. |
[8] | 冯建伟. 红土镍矿选矿工艺与设备的现状及展望[J]. 中国有色冶金, 2013, 42(05):1-6.FENG J W. Current status and development tendency of process and equipment of lateritic nickel ore preparation[J]. China Nonferrous Metals, 2013, 42(05):1-6. doi: 10.3969/j.issn.1672-6103.2013.05.001 FENG J W. Current status and development tendency of process and equipment of lateritic nickel ore preparation[J]. China Nonferrous Metals, 2013, 42(05):1-6. doi: 10.3969/j.issn.1672-6103.2013.05.001 |
[9] | 李艳军, 于海臣, 王德全, 等. 红土镍矿资源现状及加工工艺综述[J]. 金属矿山, 2010(11):5-9+15.LI Y J, YU H C, WANG D Q, et al. The current status of laterite nickel ore resources and its processing technology[J]. Metal Mine, 2010(11):5-9+15. LI Y J, YU H C, WANG D Q, et al. The current status of laterite nickel ore resources and its processing technology[J]. Metal Mine, 2010(11):5-9+15. |
[10] | 徐飞飞, 于雪, 陈新林, 等. 印尼某含镍钴氧化铁矿工艺矿物学及选矿试验研究[J]. 有色矿冶, 2016, 32(05):24-28+15.XU F F, YU X, CHEN X L, et al. Invesigations on process mineralogy and mineral processing of Indonesia low grade iron oxide ore containing Ni and Co[J]. Non-Ferrous Mining and Metallurgy, 2016, 32(05):24-28+15. doi: 10.3969/j.issn.1007-967X.2016.05.008 XU F F, YU X, CHEN X L, et al. Invesigations on process mineralogy and mineral processing of Indonesia low grade iron oxide ore containing Ni and Co[J]. Non-Ferrous Mining and Metallurgy, 2016, 32(05):24-28+15. doi: 10.3969/j.issn.1007-967X.2016.05.008 |
Flow of the cyclone classification-spiral chute roughing-shaker cleaning test
Flow of the chromite flotation condition test
Flow of the whole process test