Citation: | LI Jun, ZHOU Zhaoan, LIU Xiaowen, SUN Yanjun, XU Guohong, MAO Anzhang, ZHOU Aiqing. Pretreatment Process of Polymetallic Complex Copper Anode Slime by Oxygen Pressure Acid Leaching[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 160-164, 170. doi: 10.3969/j.issn.1000-6532.2025.02.022 |
The removal of copper and nickel from complex copper anode slime by oxygen pressure acid leaching was studied. The effects of reaction temperature, sulfuric acid concentration, liquid-solid ratio, stirring speed, oxygen partial pressure and reaction time on the removal of copper and nickel were investigated. The results show that, at the following optimal conditions, including anode slime of 30.0 g, 1.5 mol / L sulfuric acid solution of 300 mL, liquid-solid ratio of 10 (mL:g), reaction temperature of 160 °C, oxygen partial pressure of 0.2 MPa, stirring speed of 600 rpm, and leaching time of 3 h, the leaching rates of Cu and Ni can reach 99.26% and 95.36%, respectively, while the leaching rates of Sb and Bi were only 1.33% and 0.59%, Sn was hardly leached.The leaching solution can be returned to the electrolytic purification system to recover Cu and Ni, and the enrichment of high-value metals (such as Sn, Sb, Bi and precious metals ) were nearly 2.7 times.
[1] | 孔祥峰, 邓聚海. 铜阳极泥处理研究现状[J]. 世界有色金属, 2019(19): 169+171.KONG X F, DENG J H. Research status of copper anode sludge treatment[J]. World Nonferrous Metals, 2019(19): 169+171. KONG X F, DENG J H. Research status of copper anode sludge treatment[J]. World Nonferrous Metals, 2019(19): 169+171. |
[2] | 谭芳香, 黄以伟. 废杂铜电解杂质控制的研究及生产实践[J]. 云南化工, 2020, 47(4):71-72.TAN F X, HUANG Y W. Research and practice of impurities control from scrap copper electrolysis[J]. Yunnan Chemical, 2020, 47(4):71-72. TAN F X, HUANG Y W. Research and practice of impurities control from scrap copper electrolysis[J]. Yunnan Chemical, 2020, 47(4):71-72. |
[3] | 方红生, 李慧颖, 王晓阳, 等. 高砷高锡铅阳极泥脱砷与综合回收工业试验[J]. 矿冶, 2020, 29(4):111-115+136.FANG H S, LI H Y, WANG X Y, et al. Pilot test of arsenic removal and comprehensive recovery from high As, Sn and Pb bearing anode slime[J]. Mining and Metallurgical, 2020, 29(4):111-115+136. doi: 10.3969/j.issn.1005-7854.2020.04.022 FANG H S, LI H Y, WANG X Y, et al. Pilot test of arsenic removal and comprehensive recovery from high As, Sn and Pb bearing anode slime[J]. Mining and Metallurgical, 2020, 29(4):111-115+136. doi: 10.3969/j.issn.1005-7854.2020.04.022 |
[4] | 刘斌莲, 魏洪洁, 王宝文. 铅电解阳极泥中锑铋的浸出试验[J]. 矿产综合利用, 2013(2):48-50.LIU B L, WEI H J, WANG B W. Experiment of leaching of stibium and bismuth in the lead anode slime[J]. Multipurpose Utilization of Mineral Resources, 2013(2):48-50. doi: 10.3969/j.issn.1000-6532.2013.02.013 LIU B L, WEI H J, WANG B W. Experiment of leaching of stibium and bismuth in the lead anode slime[J]. Multipurpose Utilization of Mineral Resources, 2013(2):48-50. doi: 10.3969/j.issn.1000-6532.2013.02.013 |
[5] | Liu Jian, Wang Shixing, Liu Chenhui, et al. Decopperization mechanism of copper anode slime enhanced by ozone[J]. Journal of Materials Research and Technology, 2021, 15:531-541. doi: 10.1016/j.jmrt.2021.08.065 |
[6] | 张二军, 肖芬. 采用加盐氧化焙烧—硫酸浸出工艺从铜阳极泥中回收铜和银[J]. 湿法冶金, 2021, 40(2):106-109.ZAHANG E J, XIAO F. Leaching of copper and silver from copper anode slime by salt oxidizing roasting-sulfuric acid leaching process[J]. Hydrometallurgy, 2021, 40(2):106-109. ZAHANG E J, XIAO F. Leaching of copper and silver from copper anode slime by salt oxidizing roasting-sulfuric acid leaching process[J]. Hydrometallurgy, 2021, 40(2):106-109. |
[7] | 刘小文, 周兆安, 毛谙章, 等. 从高锡高砷铜阳极泥中浸出铜镍的工艺研究[J]. 矿冶工程, 2019, 39(6):104-106+110.LIU X W, ZHOU Z A, MAO A Z, et al. Processing technique for leaching copper and nickel from high-content tin-arsenic copper anode slime[J]. Mining and Metallurgical Engineering, 2019, 39(6):104-106+110. doi: 10.3969/j.issn.0253-6099.2019.06.026 LIU X W, ZHOU Z A, MAO A Z, et al. Processing technique for leaching copper and nickel from high-content tin-arsenic copper anode slime[J]. Mining and Metallurgical Engineering, 2019, 39(6):104-106+110. doi: 10.3969/j.issn.0253-6099.2019.06.026 |
[8] | 廖春发, 邹建柏, 徐振鑫, 等. 铜阳极泥定向脱除砷锑铋研究[J]. 中国有色冶金, 2021, 50(3):21-27.LIAO C F, ZHOU J B, XU Z X, et al. Study on arsenic, antimony, bismuth removal from copper anode slime[J]. China Nonferrous Metallurgy, 2021, 50(3):21-27. LIAO C F, ZHOU J B, XU Z X, et al. Study on arsenic, antimony, bismuth removal from copper anode slime[J]. China Nonferrous Metallurgy, 2021, 50(3):21-27. |
[9] | 王俊娥. 某高砷铜精矿压力浸出工艺研究[J]. 矿产综合利用, 2018(1):46-49.WANG J E. Study on pressure leaching of a high arsenic copper concentrate[J]. Multipurpose Utilization of Mineral Resources, 2018(1):46-49. doi: 10.3969/j.issn.1000-6532.2018.01.010 WANG J E. Study on pressure leaching of a high arsenic copper concentrate[J]. Multipurpose Utilization of Mineral Resources, 2018(1):46-49. doi: 10.3969/j.issn.1000-6532.2018.01.010 |
[10] | 王海荣. 铜阳极泥湿法预处理工艺研究[J]. 中国有色冶金, 2018, 47(4):70-73.WANG H R. Research of wet pretreatment process of copper anode slime[J]. China Nonferrous Metallurgy, 2018, 47(4):70-73. doi: 10.3969/j.issn.1672-6103.2018.04.019 WANG H R. Research of wet pretreatment process of copper anode slime[J]. China Nonferrous Metallurgy, 2018, 47(4):70-73. doi: 10.3969/j.issn.1672-6103.2018.04.019 |
[11] | 易建春, 邵坤. 火试金富集-火焰原子吸收法测定金矿石中金含量的不确定度评定[J]. 矿产综合利用, 2021(4):197-200.YI J C, SHAO K. Uncertainty evaluation for determination of gold content in gold ores by fire assay preconcentration-atomic absorption spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2021(4):197-200. doi: 10.3969/j.issn.1000-6532.2021.04.032 YI J C, SHAO K. Uncertainty evaluation for determination of gold content in gold ores by fire assay preconcentration-atomic absorption spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2021(4):197-200. doi: 10.3969/j.issn.1000-6532.2021.04.032 |
Effect of reaction temperature on main elements leaching efficiency
Effect of sulfuric acid concentration on main elements leaching efficiencie
Effect of liquid-solid ratio on main elements leaching efficiencies
Effect of stirring speed on main elements leaching efficiencies
Effect of oxygen partial pressure on main elements leaching efficiencies
Effect of reaction time on main elements leaching efficiencies