Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 46, No. 1
Article Contents

LIU Tengteng, HAN Fenglan, XING Zhibing, HUANG Jiahe, YANG Baoguo. Fly Ash and Gasifier Slag as Matrix to Explore their Influence as Functional Soil for Mountain Restoration[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 70-79. doi: 10.3969/j.issn.1000-6532.2025.01.007
Citation: LIU Tengteng, HAN Fenglan, XING Zhibing, HUANG Jiahe, YANG Baoguo. Fly Ash and Gasifier Slag as Matrix to Explore their Influence as Functional Soil for Mountain Restoration[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 70-79. doi: 10.3969/j.issn.1000-6532.2025.01.007

Fly Ash and Gasifier Slag as Matrix to Explore their Influence as Functional Soil for Mountain Restoration

More Information
  • In order to develop a functional soil that can be used for mountain restoration and achieve the purpose of ecological cycle restoration, the pot experiment of planting oat grass was carried out by using the industrial solid waste after removal of heavy metals - fly ash and gasification furnace slag as the main matrix and adding additive A and additive B respectively, and the screening experiment was carried out by planting a variety of plants with gasification furnace slag as the main matrix. By measuring the physical and chemical properties of the final functional soil and the relevant agronomic properties of the corresponding plants, the influence of different factors on the functional soil was investigated. The results showed that the bulk density, pH, electrical conductivity, available phosphorus, available potassium and related agronomic properties of plants of functional soil changed to a certain extent with the content of additives. At the same time, when gasification slag was used as the matrix of functional soil, the advantage of planting oat grass in the three plants (oat grass, Sudan grass and ryegrass) was higher than the other two. The results of this study can provide a theoretical basis for the further development of functional soil for ecological cycle restoration.

  • 加载中
  • [1] 顾延生, 丁俊傑, 葛继稳. 贺兰山中段植被类型及其覆盖变化研究[J]. 华中师范大学学报(自然科学版), 2016, 50(4):579-587.GU Y S, DING J J, GE J W. Survey on the vegetation types and their coverage changes in the middle Helan Mountain[J]. Journal of Huazhong Normal University(Natural Sciences), 2016, 50(4):579-587.

    Google Scholar

    GU Y S, DING J J, GE J W. Survey on the vegetation types and their coverage changes in the middle Helan Mountain[J]. Journal of Huazhong Normal University(Natural Sciences), 2016, 50(4):579-587.

    Google Scholar

    [2] 吴梦瑶, 陈林, 庞丹波, 等. 贺兰山不同海拔土壤团聚体碳氮磷含量及其化学计量特征变化[J]. 应用生态学报, 2021, 32(4):1241-1249.WU M Y, CHEN L, PANG D B, et al. Changes of the concentrations and stoichiometry of carbon, nitrogen and phosphorus in soil aggre- gates along different altitudes of Helan Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(4):1241-1249.

    Google Scholar

    WU M Y, CHEN L, PANG D B, et al. Changes of the concentrations and stoichiometry of carbon, nitrogen and phosphorus in soil aggre- gates along different altitudes of Helan Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(4):1241-1249.

    Google Scholar

    [3] DENG H B, WANG Y M, ZHANG Q X, et al. On island landscape pattern of forests in Helan Mountain and its cause of formation[J]. Science in China(Series E: Technological Sciences), 2006, 49(S1):45-53. doi: 10.1007/s11431-006-8106-0

    CrossRef Google Scholar

    [4] 焦方园. 坡度和基质对边坡喷播修复的影响研究[D]. 泰安: 山东农业大学, 2019.JIAO F Y. The effects of slopes and substrates on the seeding spraying restoration on damaged slope[D]. Taian: Shandong Agricultural University, 2019.

    Google Scholar

    JIAO F Y. The effects of slopes and substrates on the seeding spraying restoration on damaged slope[D]. Taian: Shandong Agricultural University, 2019.

    Google Scholar

    [5] BHATTACHARYA T, PANDEY S K, PANDEY V C, et al. Potential and safe utilization of Fly ash as fertilizer for Pisum sativum L. Grown in phytoremediated and non-phytoremediated amendments[J]. Environmental Science and Pollution Research, 2021, 28(36):50153-50166. doi: 10.1007/s11356-021-14179-9

    CrossRef Google Scholar

    [6] Roy M, Roychowdhury R, Mukherjee P. Remediation of fly ash dumpsites through bioenergy crop plantation and generation: a review[J]. Pedosphere, 2018, 28(4):561-580. doi: 10.1016/S1002-0160(18)60033-5

    CrossRef Google Scholar

    [7] 李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40.LI R J, ZHOU B. Study on soil pollution evaluation and multipurpose utilization of copper tailings in Tongling, Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006

    CrossRef Google Scholar

    LI R J, ZHOU B. Study on soil pollution evaluation and multipurpose utilization of copper tailings in Tongling, Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006

    CrossRef Google Scholar

    [8] 宋文, 成少平, 迟晓杰, 等. 重金属污染土壤修复遥感监测研究进展[J]. 矿产综合利用, 2021(4):21-28.SONG W, CHENG S P, CHI X J, et al. Research progress on remediation of heavy metal contaminated soil monitored by remote sensing[J]. Multipurpose Utilization of Mineral Resources, 2021(4):21-28. doi: 10.3969/j.issn.1000-6532.2021.04.004

    CrossRef Google Scholar

    SONG W, CHENG S P, CHI X J, et al. Research progress on remediation of heavy metal contaminated soil monitored by remote sensing[J]. Multipurpose Utilization of Mineral Resources, 2021(4):21-28. doi: 10.3969/j.issn.1000-6532.2021.04.004

    CrossRef Google Scholar

    [9] 张晋, 贺爱平, 李国栋, 等. 钙镁质磷矿选矿尾矿综合利用技术现状及展望[J]. 矿产综合利用, 2021(2):199-203.ZHANG J, HE A P, LI G D, et al. Status and prospect of comprehensive utilization technology of calcium-magnesium phosphate tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(2):199-203. doi: 10.3969/j.issn.1000-6532.2021.02.034

    CrossRef Google Scholar

    ZHANG J, HE A P, LI G D, et al. Status and prospect of comprehensive utilization technology of calcium-magnesium phosphate tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(2):199-203. doi: 10.3969/j.issn.1000-6532.2021.02.034

    CrossRef Google Scholar

    [10] 贺令邦, 杨绍祥. 湘西地区钾、镁、钒矿资源特点及开发利用现状[J]. 矿产综合利用, 2021(2):125-131.HE L B, YANG S X. Characteristis of potassium, magnesium and vanadium resources in Western Hunan and their development and utilization status quo[J]. Multipurpose Utilization of Mineral Resources, 2021(2):125-131.

    Google Scholar

    HE L B, YANG S X. Characteristis of potassium, magnesium and vanadium resources in Western Hunan and their development and utilization status quo[J]. Multipurpose Utilization of Mineral Resources, 2021(2):125-131.

    Google Scholar

    [11] 况欣宇. 基于采矿固废的东部草原表土稀缺矿区土壤重构实验研究[D]. 北京: 中国地质大学, 2020.KUANG X Y. Research on soil reconstruction of eastern grassland surface scarce mining area based on mining solid waste[D]. Beijing: China University of Geosciences, 2020.

    Google Scholar

    KUANG X Y. Research on soil reconstruction of eastern grassland surface scarce mining area based on mining solid waste[D]. Beijing: China University of Geosciences, 2020.

    Google Scholar

    [12] 闫玉兵. 改性粉煤灰对含磷废水的处理研究[J]. 矿产综合利用, 2020(5):34-44.YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004

    CrossRef Google Scholar

    YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004

    CrossRef Google Scholar

    [13] SAALTINK R, GRIFFIOEN J, MOL G, et al. Geogenic and agricultural controls on the geochemical composition of European agricultural soils[J]. Journal of Soils and Sediments, 2014, 14(1):121-137. doi: 10.1007/s11368-013-0779-y

    CrossRef Google Scholar

    [14] JAYARATHNE J R R N, DEEPAGODA T K K C, CLOUGH T J, et al. Gas‐Diffusivity based characterization of aggregated agricultural soils[J]. Soil Science Society of America Journal, 2020, 84(2):387-398. doi: 10.1002/saj2.20033

    CrossRef Google Scholar

    [15] YAN D Z, WANG D J, YANG L Z. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil[J]. Biology and Fertility of Soils, 2007, 44(1):98-100.

    Google Scholar

    [16] 杨宏新, 毛培春, 孟林, 等. 19份高燕麦草种质材料苗期抗旱性评价[J]. 干旱地区农业研究, 2011, 29(2):6-14+34.YANG H X, MAO P C, MENG L, et al. Assessment of drought resistance for 19 germplasm and materials of arrhenatherum elatius at the seeding stage[J]. Agricultural Research in the Arid Areas, 2011, 29(2):6-14+34.

    Google Scholar

    YANG H X, MAO P C, MENG L, et al. Assessment of drought resistance for 19 germplasm and materials of arrhenatherum elatius at the seeding stage[J]. Agricultural Research in the Arid Areas, 2011, 29(2):6-14+34.

    Google Scholar

    [17] 桂枝, 高建明, 袁庆华, 等. 苏丹草生长早期耐旱性评价方法及种质耐旱性筛选[J]. 草地学报, 2015, 23(5):1007-1012.GUI Z, GAO J M, YUAN Q H, et al. Evaluation method and screening of drought tolerance of elite germplasm in the early growth stage of sudangrass[J]. Acta Agrestia Sinica, 2015, 23(5):1007-1012.

    Google Scholar

    GUI Z, GAO J M, YUAN Q H, et al. Evaluation method and screening of drought tolerance of elite germplasm in the early growth stage of sudangrass[J]. Acta Agrestia Sinica, 2015, 23(5):1007-1012.

    Google Scholar

    [18] 中国农业百科全书总编辑委员会农业化学卷编辑委员会. 中国农业百科全书·农业化学卷[M]. 北京: 农业出版社, 1996: 126-127.Editorial Committee of Agricultural Chemistry Volume of the general Editorial Committee of China Agricultural Encyclopedia Middle Volume. Encyclopedia of Chinese agriculture·Agricultural chemistry volume[M]. Beijing: Agricultural Press, 1996: 126-127.

    Google Scholar

    Editorial Committee of Agricultural Chemistry Volume of the general Editorial Committee of China Agricultural Encyclopedia Middle Volume. Encyclopedia of Chinese agriculture·Agricultural chemistry volume[M]. Beijing: Agricultural Press, 1996: 126-127.

    Google Scholar

    [19] 中华人民共和国生态环境部. 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法. HJ 491-2019[S]. 北京: 中国环境出版集团, 2019.Ministry of Ecological Environment of the People's Republic of China. Soil and sediment determination of copper, zinc, lead, nickel and chromium Flame atomic absorption spectrophotometry. HJ 491-2019[S]. Beijing: China Environmental publishing group, 2019.

    Google Scholar

    Ministry of Ecological Environment of the People's Republic of China. Soil and sediment determination of copper, zinc, lead, nickel and chromium Flame atomic absorption spectrophotometry. HJ 491-2019[S]. Beijing: China Environmental publishing group, 2019.

    Google Scholar

    [20] 中华人民共和国生态环境部. 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法. GB/T 17141-1997[S]. 北京: 中国环境出版社, 1998.Ministry of ecological environment of the people's Republic of China. Soil quality determination of lead and cadmium graphite furnace atomic absorption spectrophotometry. GB/T 17141-1997[S]. Beijing: China Environment publishing house, 1998.

    Google Scholar

    Ministry of ecological environment of the people's Republic of China. Soil quality determination of lead and cadmium graphite furnace atomic absorption spectrophotometry. GB/T 17141-1997[S]. Beijing: China Environment publishing house, 1998.

    Google Scholar

    [21] 中华人民共和国国家质量监督检验检疫总局(中国国家标准化管理委员会). 土壤质量 总汞、总砷、总铅的测定 原子荧光法. GB/T 22105.2-2008[S]. 北京: 中国标准出版社, 2008.General Administration of quality supervision, inspection and Quarantine of the people's Republic of China (China National Standardization Administration Committee). Soil quality determination of total mercury, total arsenic and total lead atomic fluorescence spectrometry. GB/T 22105.2-2008[S]. Beijing: China Standards Press, 2008.

    Google Scholar

    General Administration of quality supervision, inspection and Quarantine of the people's Republic of China (China National Standardization Administration Committee). Soil quality determination of total mercury, total arsenic and total lead atomic fluorescence spectrometry. GB/T 22105.2-2008[S]. Beijing: China Standards Press, 2008.

    Google Scholar

    [22] 孟文武, 郑利亚, 崔诚, 等. 武功山退化草甸养分分布格局及相关性[J]. 江苏农业科学, 2017, 45(3):237-240.MENG W W, ZHENG L Y, CUI C, et al. Nutrient distribution pattern and correlation of degraded meadow in Wugong Mountain[J]. Jiangsu Agricultural Sciences, 2017, 45(3):237-240.

    Google Scholar

    MENG W W, ZHENG L Y, CUI C, et al. Nutrient distribution pattern and correlation of degraded meadow in Wugong Mountain[J]. Jiangsu Agricultural Sciences, 2017, 45(3):237-240.

    Google Scholar

    [23] 李明虎, 罗钰颖, 贾维嘉, 等. 不同氮肥对西南蜡梅幼苗生长及根际土壤细菌群落的影响[J]. 北方园艺, 2020(19):86-93.LI M H, LUO Y Y, LI Y, et al. Effects of different nitrogen forms on the growth and rhizosphere bacterial community structure of chimonanthus campanulatus[J]. Northern Horticulture, 2020(19):86-93.

    Google Scholar

    LI M H, LUO Y Y, LI Y, et al. Effects of different nitrogen forms on the growth and rhizosphere bacterial community structure of chimonanthus campanulatus[J]. Northern Horticulture, 2020(19):86-93.

    Google Scholar

    [24] 陈强龙. 秸秆还田与肥料配施对土壤氧化还原酶活性影响的研究[D]. 咸阳: 西北农林科技大学, 2009.CHEN Q L. Effect of matching use of staraw and fertilizer on soil oxidoreductase activity[D]. Xianyang: Northwest A&F University, 2009.

    Google Scholar

    CHEN Q L. Effect of matching use of staraw and fertilizer on soil oxidoreductase activity[D]. Xianyang: Northwest A&F University, 2009.

    Google Scholar

    [25] 潘昭隆, 刘会芳, 赵帅翔, 等. 氮肥投入对不同土壤类型电导率变化的影响[J]. 福建农林大学学报(自然科学版), 2021, 50(4):533-537.PAN Z L, LIU H F, ZHAO S X, et al. The influence of nitrogen fertilizer input on electrical conductivity of different soil types[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2021, 50(4):533-537.

    Google Scholar

    PAN Z L, LIU H F, ZHAO S X, et al. The influence of nitrogen fertilizer input on electrical conductivity of different soil types[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2021, 50(4):533-537.

    Google Scholar

    [26] 宋长青, 吴金水, 陆雅海, 等. 中国土壤微生物学研究10年回顾[J]. 地球科学进展, 2013, 28(10):1087-1105.SONG C Q, WU J S, LU Y H, et al. Advances of soil microbiology in the last Decade in China[J]. Advances in Earth Science, 2013, 28(10):1087-1105. doi: 10.11867/j.issn.1001-8166.2013.10.1087

    CrossRef Google Scholar

    SONG C Q, WU J S, LU Y H, et al. Advances of soil microbiology in the last Decade in China[J]. Advances in Earth Science, 2013, 28(10):1087-1105. doi: 10.11867/j.issn.1001-8166.2013.10.1087

    CrossRef Google Scholar

    [27] 宁夏百科全书编纂委员会. 宁夏百科全书[M]. 银川: 宁夏人民出版社, 1998: 51.Ningxia Encyclopedia Compilation Committee. Ningxia Encyclopedia[M]. Yinchuan: Ningxia people's publishing house, 1998: 51.

    Google Scholar

    Ningxia Encyclopedia Compilation Committee. Ningxia Encyclopedia[M]. Yinchuan: Ningxia people's publishing house, 1998: 51.

    Google Scholar

    [28] 李菊, 杨永志, 甘良, 等. 土壤改良剂和有机肥对旱改水砖红壤稻田改良效果 [J]. 中国土壤与肥料, 2021(录用定稿).LI J, YANG Y Z, GAN L, et al. Effects of soil amendments and organic fertiliser application on latosol soil properties on a paddy field converted from dry land[J]. Soil and Fertilizer Sciences in China, 2021(in press).

    Google Scholar

    LI J, YANG Y Z, GAN L, et al. Effects of soil amendments and organic fertiliser application on latosol soil properties on a paddy field converted from dry land[J]. Soil and Fertilizer Sciences in China, 2021(in press).

    Google Scholar

    [29] 林崇德, 姜璐, 王德胜. 中国成人教育百科全书: 地理·环境[M]. 海口: 南海出版公司, 1994: 205.LIN C D, JIANG L, WANG D S. Encyclopedia of Chinese adult education: geography·environment[M]. Haikou: Nanhai Publishing Company, 1994: 205.

    Google Scholar

    LIN C D, JIANG L, WANG D S. Encyclopedia of Chinese adult education: geography·environment[M]. Haikou: Nanhai Publishing Company, 1994: 205.

    Google Scholar

    [30] 郭美丽. 延河流域退耕植被恢复过程中土壤蓄水性能变化研究[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2017.GUO M L. Research center of soil and water conservation and ecological environment[D]. Beijing: University of Chinese Academy of Sciences (Research Center for soil and water conservation and ecological environment, Ministry of education, Chinese Academy of Sciences) , 2017.

    Google Scholar

    GUO M L. Research center of soil and water conservation and ecological environment[D]. Beijing: University of Chinese Academy of Sciences (Research Center for soil and water conservation and ecological environment, Ministry of education, Chinese Academy of Sciences) , 2017.

    Google Scholar

    [31] 彭东海, 侯晓龙, 何宗明, 等. 金尾矿废弃地不同植被恢复阶段物种多样性与土壤特性的演变[J]. 水土保持学报, 2016, 30(1):159-164.PENG D H, HOU X L, HE Z M, et al. Evolution of species diversity and soil characteristics at different stages of vegetation restoration in gold tailings[J]. Journal of Soil and Water Conservation, 2016, 30(1):159-164.

    Google Scholar

    PENG D H, HOU X L, HE Z M, et al. Evolution of species diversity and soil characteristics at different stages of vegetation restoration in gold tailings[J]. Journal of Soil and Water Conservation, 2016, 30(1):159-164.

    Google Scholar

    [32] 李小容, 白礼姣, 陈本莉, 等. 不同林龄木麻黄林地土壤理化性质与生化活性分析[J]. 西北林学院学报, 2014, 29(2):37-41.LI X R, BAI L J, CHEN B L, et al. Analysis of soil physicochemical properties and biological activity of the casuarina equisetifolia forests with different Ages[J]. Journal of Northwest Forestry University, 2014, 29(2):37-41. doi: 10.3969/j.issn.1001-7461.2014.02.07

    CrossRef Google Scholar

    LI X R, BAI L J, CHEN B L, et al. Analysis of soil physicochemical properties and biological activity of the casuarina equisetifolia forests with different Ages[J]. Journal of Northwest Forestry University, 2014, 29(2):37-41. doi: 10.3969/j.issn.1001-7461.2014.02.07

    CrossRef Google Scholar

    [33] 汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素[J]. 北京大学学报(自然科学版), 2008(6):945-952.WANG T, YANG Y H, MA W H. Storage, patterns and environmental controls of soil phosphorus in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008(6):945-952.

    Google Scholar

    WANG T, YANG Y H, MA W H. Storage, patterns and environmental controls of soil phosphorus in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008(6):945-952.

    Google Scholar

    [34] BADER B R, TABAN S K, FAHMI A H, et al. Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays L) growth[J]. Journal of the Saudi Society of Agricultural Sciences, 2021, 20(6):390-394. doi: 10.1016/j.jssas.2021.04.006

    CrossRef Google Scholar

    [35] 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992.National Soil Survey Office. Soil survey technology in China[M]. Beijing: Agricultural Press, 1992.

    Google Scholar

    National Soil Survey Office. Soil survey technology in China[M]. Beijing: Agricultural Press, 1992.

    Google Scholar

    [36] 党晶晶, 赵成章, 王继伟. 高寒草地甘肃臭草斑块不同发育阶段茎-叶生物量分配: 异速生长分析[J]. 生态学杂志, 2015, 34(6):1540-1545.DANG J J, ZHAO C Z, WANG J W. Biomass allocation of stems and leaves in Melica przewalskyi under different developmental stages in alpine grassland: Allometric scaling analysis[J]. Chinese Journal of Ecology, 2015, 34(6):1540-1545.

    Google Scholar

    DANG J J, ZHAO C Z, WANG J W. Biomass allocation of stems and leaves in Melica przewalskyi under different developmental stages in alpine grassland: Allometric scaling analysis[J]. Chinese Journal of Ecology, 2015, 34(6):1540-1545.

    Google Scholar

    [37] ZHANG B, YE W, REN D, et al. Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice[J]. Rice, 2015, 8(1):1-10. doi: 10.1186/s12284-014-0034-1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(8)

Article Metrics

Article views(334) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint