Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 46, No. 1
Article Contents

REN Zhili, QIN Ya, FENG Zuohai, WU Jie, LIU Shiyun, HU Qiaofan, BAI Yuming, ZHOU Pengcheng. Strain Characteristics of Motianling Ductile Shear Zone in Northern Guangxi and its Tectonic Significances[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 46-60. doi: 10.3969/j.issn.1000-6532.2025.01.005
Citation: REN Zhili, QIN Ya, FENG Zuohai, WU Jie, LIU Shiyun, HU Qiaofan, BAI Yuming, ZHOU Pengcheng. Strain Characteristics of Motianling Ductile Shear Zone in Northern Guangxi and its Tectonic Significances[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 46-60. doi: 10.3969/j.issn.1000-6532.2025.01.005

Strain Characteristics of Motianling Ductile Shear Zone in Northern Guangxi and its Tectonic Significances

More Information
  • This is an article in the field of structural geology. In this article, the strain characteristics and tectonic significance of the tile shear zone of Motianling are discussed through macro-microstructure, finite strain measurement of rocks and EBSD structural analysis of quartz. The results show that the Motianling ductile shear zone has typical macro-micro ductile deformation fabrics, including mylonite foliation, rotating porphyry system, S-C fabric, domino structures, asymmetric ocular sphere, quartz dynamic recrystallization, core-mantle structure, mica fish, feldspar mechanical twinning and asymmetric pressure shadow. The finite strain measurement and macro-micro structure shows that the Motianling ductile shear zone extends over 65 km in NNE direction, and its width is 8~12 km. The C-foliation tendency of the mylonite is 220°~356°, the dip angle is 10°~74°, and the extremely dense point occurrence is 285°∠22°. The Motianling ductile shear zone has kinematic characteristics of early sinistral thrust shear and late dextral normal slip shear. The rock strain of Motianling ductile shear zone is mainly flattening strain and tensile strain. At the same time, it shows the shear property of pure shear and simple shear. Quartz EBSD fabric analysis show that the Motianling ductile shear zone is characterized by the late middle-low temperature deformation ( 300~450 ℃ ) superimposed on the early middle-high temperature deformation ( 400~600 ℃ ). The paleo differential stress and strain rate of Motianling ductile shear zone are relatively low, ranging from 10.59~36.31 MPa and 0.63×10-13~87.18×10-13 s-1, respectively. In combination with the above studies and regional geological data, it is considered that the Motianling ductile shear zone was formed in the tectonic setting of recoil after extrusion of the Cathaysia block from SE to the Yangtze block. In the early extrusion and collision stage, the Motianling ductile shear zone has the property of mid-high temperature sinistral thrust shear. After the late orogenic extension, the Motianling ductile shear zone has the property of dextral normal slip shear at mid-low temperature. The above understanding reveals the occurrence, strain characteristics, rheology and dynamics setting of the Motianling ductile shear zone and provides new data for deepening the understand of Caledonian tectonic movement in South China.

  • 加载中
  • [1] WANG Y J, FAN W M, ZHAO G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China block[J]. Gondwana Research, 2007(12):404-416.

    Google Scholar

    [2] LI Z X, LI X H, WARTHO J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5-6):772-793. doi: 10.1130/B30021.1

    CrossRef Google Scholar

    [3] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10):1553-1582.ZHANG G W, GUO A L, WANG Y J, et al. Tectonics of South China continent and its problems[J]. China Science: Earth Sciences, 2013, 43(10):1553-1582.

    Google Scholar

    ZHANG G W, GUO A L, WANG Y J, et al. Tectonics of South China continent and its problems[J]. China Science: Earth Sciences, 2013, 43(10):1553-1582.

    Google Scholar

    [4] WANG W, ZHOU M F, YAN D P, et al. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao group, south-eastern Yangtze block, south China[J]. Precambrian Research, 2012(192-195):107-124.

    Google Scholar

    [5] 杨菲, 汪正江, 王剑, 等. 华南西部新元古代中期沉积盆地性质及其动力学分析—来自桂北丹洲群的沉积学制约[J]. 地质论评, 2012(5):854-864.YANG F, WANG Z J, WANG J, et al. An analysis on property and dynamics of the middle neoproterozoic sedimentary basin in the Western of South China: constraint from the sedimentary data of Danzhou group in Northern Guangxi[J]. Geological Review, 2012(5):854-864.

    Google Scholar

    YANG F, WANG Z J, WANG J, et al. An analysis on property and dynamics of the middle neoproterozoic sedimentary basin in the Western of South China: constraint from the sedimentary data of Danzhou group in Northern Guangxi[J]. Geological Review, 2012(5):854-864.

    Google Scholar

    [6] 梁国宝, 黄少棠. 桂北三防地区韧性剪切带研究[J]. 广西地质, 1997, 10(4):1-4.LIANG G B, HUANG S T. Study on ductile shear zone in three defense areas of Northern Guangxi[J]. Guangxi Geology, 1997, 10(4):1-4.

    Google Scholar

    LIANG G B, HUANG S T. Study on ductile shear zone in three defense areas of Northern Guangxi[J]. Guangxi Geology, 1997, 10(4):1-4.

    Google Scholar

    [7] 张桂林. 扬子陆块南缘(桂北地区)前泥盆纪构造演化的运动学和动力学研究[D]. 长沙: 中南大学, 2004.ZHANG G L. Kinematics and dynamics of pre-devonian tectonic evolution at south margin of Yangtze Bloek in North Guangxi[D]. Changsha: Central South University, 2004.

    Google Scholar

    ZHANG G L. Kinematics and dynamics of pre-devonian tectonic evolution at south margin of Yangtze Bloek in North Guangxi[D]. Changsha: Central South University, 2004.

    Google Scholar

    [8] 广西壮族自治区地质局. 罗城幅 1∶20 万区域地质测量报告书[R]. 南宁: 广西壮族自治区地质局, 1968: 1-108.Bureau of Geology of Guangxi Zhuang Autonomous Region. Luo Cheng 1∶200, 000 Regional Geological Survey report[R]. Nanning: Bureau of Geology of Guangxi Zhuang Autonomous Region, 1968: 1-108.

    Google Scholar

    Bureau of Geology of Guangxi Zhuang Autonomous Region. Luo Cheng 1∶200, 000 Regional Geological Survey report[R]. Nanning: Bureau of Geology of Guangxi Zhuang Autonomous Region, 1968: 1-108.

    Google Scholar

    [9] 汪绍年. 广西及其邻区片麻状花岗质岩石成因初议[J]. 广西地质, 1988(2):55-64.WANG S N. Preliminary discussion on the origin of the gneissic granites in Guangxi and its neighbouring regions[J]. Guangxi Geology, 1988(2):55-64.

    Google Scholar

    WANG S N. Preliminary discussion on the origin of the gneissic granites in Guangxi and its neighbouring regions[J]. Guangxi Geology, 1988(2):55-64.

    Google Scholar

    [10] 于凯朋. 桂北摩天岭和元宝山花岗岩体中片麻状构造的形成机制[D]. 桂林: 桂林理工大学, 2010.YU K P. Genetic mechanism of the gneissic structure in Motianling and Yuanbaoshan Granitic Pluton in North Guangxi[D]. Guilin: Guilin University of Technology, 2010.

    Google Scholar

    YU K P. Genetic mechanism of the gneissic structure in Motianling and Yuanbaoshan Granitic Pluton in North Guangxi[D]. Guilin: Guilin University of Technology, 2010.

    Google Scholar

    [11] 李佐强, 陈敏, 卢君勇, 等. 川南马边黄家坪地区下寒武统麦地坪组磷块岩稀土元素地球化学特征及成因机制[J]. 矿产综合利用, 2023, 44(1):75-87.LI Z Q, CHEN M, LU J Y, et al. Geochemical characteristics and formation mechanism of phosphorite of lower cambrian Maidiping formation in Huangjiaping area of Mabian county, Southern Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1):75-87. doi: 10.3969/j.issn.1000-6532.2023.01.010

    CrossRef Google Scholar

    LI Z Q, CHEN M, LU J Y, et al. Geochemical characteristics and formation mechanism of phosphorite of lower cambrian Maidiping formation in Huangjiaping area of Mabian county, Southern Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1):75-87. doi: 10.3969/j.issn.1000-6532.2023.01.010

    CrossRef Google Scholar

    [12] 陈超, 孔德才, 田小林, 等. 四川省同德石墨矿床地球化学特征及Re-Os同位素定年[J]. 矿产综合利用, 2023, 44(1):88-98+110.CHEN C, KONG D C, TIAN X L, et al. Geochemical characteristics and Re-Os isotopic dating of Tongde graphite deposit, Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1):88-98+110.

    Google Scholar

    CHEN C, KONG D C, TIAN X L, et al. Geochemical characteristics and Re-Os isotopic dating of Tongde graphite deposit, Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1):88-98+110.

    Google Scholar

    [13] 张雪锋. 桂北四堡韧性剪切带研究[D]. 北京: 中国地质大学, 2015.ZHANG X F. Research on the Sibao ductile shear zone, northern Guangxi[D]. Beijing: China University of Geosciences, 2015.

    Google Scholar

    ZHANG X F. Research on the Sibao ductile shear zone, northern Guangxi[D]. Beijing: China University of Geosciences, 2015.

    Google Scholar

    [14] 周雪瑶, 于津海, 王丽娟, 等. 粤西云开地区基底变质岩的组成和形成[J]. 岩石学报, 2015, 31(3):855-882.ZHOU X Y, YU J H, WANG L J, et al. Compositions and formation of the basement metamorphic rocks in Yunkai terrane, western Guangdong Province, South China[J]. Acta Petrologica Sinica, 2015, 31(3):855-882

    Google Scholar

    ZHOU X Y, YU J H, WANG L J, et al. Compositions and formation of the basement metamorphic rocks in Yunkai terrane, western Guangdong Province, South China[J]. Acta Petrologica Sinica, 2015, 31(3):855-882

    Google Scholar

    [15] 广西壮族自治区地质矿产勘查开发局. 广西壮族自治区数字地质图(1: 50 万)[R]. 南宁: 广西壮族自治区地质矿产勘查开发局, 2006.Bureau of Geology and Mineral Exploration and Development of Guangxi Zhuang Autonomous Region. Digital geological map of Guangxi Zhuang Autonomous Region (1: 500, 000)[R]. Nanning: Bureau of Geology and Mineral Exploration and Development of Guangxi Zhuang Autonomous Region, 2006.

    Google Scholar

    Bureau of Geology and Mineral Exploration and Development of Guangxi Zhuang Autonomous Region. Digital geological map of Guangxi Zhuang Autonomous Region (1: 500, 000)[R]. Nanning: Bureau of Geology and Mineral Exploration and Development of Guangxi Zhuang Autonomous Region, 2006.

    Google Scholar

    [16] SU H M, JIANG S Y, SHAO J B, et al. New identification and significance of early Cretaceous mafic rocks in the interior South China block[J]. Scientific Reports, 2021, 11(1):11396. doi: 10.1038/s41598-021-91045-1

    CrossRef Google Scholar

    [17] 刘诗云. 桂北摩天岭韧性剪切带构造特征及流变参数估算[D]. 桂林: 桂林理工大学, 2017.LIU S Y. Deformation characteristics and rheological parameter estimation of Motianling ductile shear zone[D]. Guilin: Guilin University of Technology, 2017.

    Google Scholar

    LIU S Y. Deformation characteristics and rheological parameter estimation of Motianling ductile shear zone[D]. Guilin: Guilin University of Technology, 2017.

    Google Scholar

    [18] 郭阿龙. 桂北元宝山韧性剪切带构造特征及流变参数估算[D]. 桂林: 桂林理工大学, 2017.GUO A L. Tectonic characteristics and rheological parameter estimation of Yuanbaoshan ductile shear zone[D]. Guilin: Guilin University of Technology, 2017.

    Google Scholar

    GUO A L. Tectonic characteristics and rheological parameter estimation of Yuanbaoshan ductile shear zone[D]. Guilin: Guilin University of Technology, 2017.

    Google Scholar

    [19] 秦亚, 冯佐海, 邢全力, 等. 湘桂交界地区三江断裂带的变形时代及对泛非构造热事件的响应[J]. 高校地质学报, 2022, b,28(2):211-224.QIN Y, FENG Z H, XING Q L, et al. The deformation age of Sanjiang fault zone and discovery of Pan-African tectonicthermal events in adjacent areas of Hunan and Guangxi[J]. Geological Journal of China Universities, 2022, b,28(2):211-224.

    Google Scholar

    QIN Y, FENG Z H, XING Q L, et al. The deformation age of Sanjiang fault zone and discovery of Pan-African tectonicthermal events in adjacent areas of Hunan and Guangxi[J]. Geological Journal of China Universities, 2022, b,28(2):211-224.

    Google Scholar

    [20] 王新社, 郑亚东, 张进江, 等. 呼和浩特变质核杂岩伸展运动学特征及剪切作用类型[J]. 地质通报, 2002, 21(5):238-245.WANG X S, ZHENG Y D, ZHANG J J, et al. Extensional kinematics and shear type of the Hohhot metamorphic core complex, Inner Mongolia[J]. Geological Bulletin of China, 2002, 21(5):238-245.

    Google Scholar

    WANG X S, ZHENG Y D, ZHANG J J, et al. Extensional kinematics and shear type of the Hohhot metamorphic core complex, Inner Mongolia[J]. Geological Bulletin of China, 2002, 21(5):238-245.

    Google Scholar

    [21] 郑亚东, 王涛. 中蒙边界区中生代推覆构造与伸展垮塌作用的运动学和动力学分析[J]. 中国科学: 地球科学, 2005, 35(4):291-303.ZHENG Y D, WANG T. Kinematics and dynamics analysis of Mesozoic nappe structure and extensional collapse in the China-Mongolia boundary region[J]. Science in China: Earth Sciences, 2005, 35(4):291-303.

    Google Scholar

    ZHENG Y D, WANG T. Kinematics and dynamics analysis of Mesozoic nappe structure and extensional collapse in the China-Mongolia boundary region[J]. Science in China: Earth Sciences, 2005, 35(4):291-303.

    Google Scholar

    [22] KUTTY T S, JOY S. RFPHI——a program in turboc for the Rf/φ diagram method of two-dimensional strain analysis[J]. Computers & Geosciences, 1994, 20(2):247-263.

    Google Scholar

    [23] 汤经武, 杨学敏. 微型计算机在地质构造解析中的应用[M]. 武汉: 中国地质大学出版社, 1989.TANG J W, YANG X M. Application of microcomputer in geological structure analysis[M]. Wuhan: China University of Geosciences Press, 1989.

    Google Scholar

    TANG J W, YANG X M. Application of microcomputer in geological structure analysis[M]. Wuhan: China University of Geosciences Press, 1989.

    Google Scholar

    [24] BOBYARCHICK A R. The eigenvalues of steady state flow in Mohrspace[J]. Tectonophysics, 1986, 122(1-2):35-51. doi: 10.1016/0040-1951(86)90157-5

    CrossRef Google Scholar

    [25] TIKOFF B, FOSSEN H. The limitations of three-dimensional kinematic vorticity analysis[J]. Journal of Structural Geology, 1995, 17(12):1771-1784. doi: 10.1016/0191-8141(95)00069-P

    CrossRef Google Scholar

    [26] SIMPSON C, DEPAOR D G. Strain and kinematic analysis in general shear zones[J]. Journal of Structural Geology, 1993, 15(1):1-20. doi: 10.1016/0191-8141(93)90075-L

    CrossRef Google Scholar

    [27] OKUDAIRA T, TAKESHITA T, HARA I, et al. A new estimate of the conditions for transition from basal <a> to prism [c] slip in naturally deformed quartz[J]. Tectonophysics, 1995, 250(1-3):31-46. doi: 10.1016/0040-1951(95)00039-4

    CrossRef Google Scholar

    [28] TAKESHITA T. Estimate of the physical conditions for deformation based on c-axis fabric transitions in naturally deformed quartzite[J]. Journal-Geological Society of Japan, 1996, 102:211-222.

    Google Scholar

    [29] 许志琴, 王勤, 梁凤华, 等. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J]. 岩石学报, 2009, 25(7):1721-1736.XU Z Q, WANG Q, LIANG F H, et al. Election backscatter diffraction (EBSD) technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica, 2009, 25(7):1721-1736.

    Google Scholar

    XU Z Q, WANG Q, LIANG F H, et al. Election backscatter diffraction (EBSD) technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica, 2009, 25(7):1721-1736.

    Google Scholar

    [30] 黄学猛, 张进江, 许志琴. 电子背散射衍射EBSD技术在地壳构造变形研究中的应用[J]. 地质学报, 2016, 90(6):1130-1145.HUANG X M, ZHANG J J, XU Z Q. The application of EBSD in the study of crustal structural deformation[J]. Acta Geologica Sinica, 2016, 90(6):1130-1145.

    Google Scholar

    HUANG X M, ZHANG J J, XU Z Q. The application of EBSD in the study of crustal structural deformation[J]. Acta Geologica Sinica, 2016, 90(6):1130-1145.

    Google Scholar

    [31] 李刚, 刘正宏, 刘俊来, 等. 医巫闾山伸展型韧性剪切带的形成过程及年代学证据[J]. 中国科学: 地球科学, 2012, 42(6):879-892.LI G, LIU Z H, LIU J L, et al. Formation process and chronological evidence of stretching-type ductile shear belt in Yiwulu Mountain[J]. Science China Earth Sciences, 2012, 42(6):879-892.

    Google Scholar

    LI G, LIU Z H, LIU J L, et al. Formation process and chronological evidence of stretching-type ductile shear belt in Yiwulu Mountain[J]. Science China Earth Sciences, 2012, 42(6):879-892.

    Google Scholar

    [32] MERCIER J C C, ANDERSON D A, CARTER N L. Stress in the lithosphere: inferences from steady state flow of rocks[M]. Stress in the Earth. Birkhauser, Basel, 1977.

    Google Scholar

    [33] TWISS R J. Theory and applicability of a recrystallized grain size paleopiezometer[J]. Pure and Applied Geophysics, 1977, 115(1-2):227-244. doi: 10.1007/BF01637105

    CrossRef Google Scholar

    [34] TWISS R J. Static theory of size variation with stress for subgrains and dynamically re-crystallized grains[J]. USA Geological Survey Open File Report, 1980, 80:660-683.

    Google Scholar

    [35] STIPP M, TULLIS J. The recrystallized grain size piezometer for quartz[J]. Geophysical Research Letters, 2003, 30(21):2088.

    Google Scholar

    [36] POIRIER J P. Creep of cystals: high-temperature deformation processes in metals, ceramics and minerals[M]. Camridge University Press, New York, 1985.

    Google Scholar

    [37] HACKER B R, YIN A, CHRISTIE J M, et al. Differential stress, strain rate, and temperatures of mylonitization in the Ruby Mountains, Nevada: implications for the rate and duration of uplift[J]. Journal of Geophyical Research: Solid earth, 1990, 95(86):8569-8580.

    Google Scholar

    [38] PARRISH D K, KRIVZ A L, CARTER N L. Finite-element folds of similar geometry[J]. Tectonophysics, 1976, 32(3-4):183-207. doi: 10.1016/0040-1951(76)90062-7

    CrossRef Google Scholar

    [39] GLEASON G C, TULLIS J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J]. Tectonophysics, 1995, 247(1-4):1-23. doi: 10.1016/0040-1951(95)00011-B

    CrossRef Google Scholar

    [40] 马筱. 黔东及其邻区早古生代构造变形机制及其演化过程[D]. 武汉: 中国地质大学, 2018.MA X. Early Paleozoic tectonic deformation mechanism and its evolution process in East Guizhou and its adjacent areas[D]. Wuhan: China University of Geosciences, 2018.

    Google Scholar

    MA X. Early Paleozoic tectonic deformation mechanism and its evolution process in East Guizhou and its adjacent areas[D]. Wuhan: China University of Geosciences, 2018.

    Google Scholar

    [41] 施实. 前寒武摩天岭岩体同位素地质年龄讨论[J]. 地球化学, 1976(4):297-308.SHI S. A discussion on the isotopic geochronology of the Motianling massif[J]. Geochemistry, 1976(4):297-308. doi: 10.3321/j.issn:0379-1726.1976.04.012

    CrossRef Google Scholar

    SHI S. A discussion on the isotopic geochronology of the Motianling massif[J]. Geochemistry, 1976(4):297-308. doi: 10.3321/j.issn:0379-1726.1976.04.012

    CrossRef Google Scholar

    [42] 汤世凯, 马筱, 杨坤光, 等. 黔东桂北加里东期两类构造变形特征与成因机制探讨[J]. 现代地质, 2014, 8(1):109-118.TANG S K, MA X, YANG K G, et al. Characteristics and genesis of two types of tectonic deformation during caledonian in Eastern Guizhou and Northern Guangxi[J]. Geoscience, 2014, 8(1):109-118. doi: 10.3969/j.issn.1000-8527.2014.01.010

    CrossRef Google Scholar

    TANG S K, MA X, YANG K G, et al. Characteristics and genesis of two types of tectonic deformation during caledonian in Eastern Guizhou and Northern Guangxi[J]. Geoscience, 2014, 8(1):109-118. doi: 10.3969/j.issn.1000-8527.2014.01.010

    CrossRef Google Scholar

    [43] QIU L, YAN D P, TANG S L, et al. Insights into post-orogenic extension and opening of the Palaeo-Tethys ocean recorded by an early Devonian core complex in South China[J]. Journal of Geodynamics, 2020, 135:1-14.

    Google Scholar

    [44] 金宠. 雪峰陆内构造系统逆冲推滑体系[D]. 青岛: 中国海洋大学, 2010.JIN C. Thrust and decollement system of the xuefeng intracontinental tectonic system[D]. Qingdao: Ocean University of China, 2010.

    Google Scholar

    JIN C. Thrust and decollement system of the xuefeng intracontinental tectonic system[D]. Qingdao: Ocean University of China, 2010.

    Google Scholar

    [45] 白玉明. 桂北九万大山地区韧性剪切带与锡矿成矿关系——以九逢锡矿为例[D]. 桂林: 桂林理工大学, 2019.BAI Y M. Relationship between ductile shear zone and tin mineralization in Jiuwandashan area, northern Guangxi—Taking Jiufeng tin mine as an example[D]. Guilin: Guilin University of Technology, 2019.

    Google Scholar

    BAI Y M. Relationship between ductile shear zone and tin mineralization in Jiuwandashan area, northern Guangxi—Taking Jiufeng tin mine as an example[D]. Guilin: Guilin University of Technology, 2019.

    Google Scholar

    [46] CHU Y, LIN W, FAURE M, et al. Cretaceous episodic extension in the South China block, East Asia: evidence from the Yuechengling massif of Central South China[J]. Tectonics, 2019, 38(10):3675-3702. doi: 10.1029/2019TC005516

    CrossRef Google Scholar

    [47] 张成龙, 秦亚, 冯佐海, 等. 桂北龙胜吊竹山辉绿岩年代学及其地质意义[J]. 桂林理工大学学报, 2020, 40(1):1-14.ZHANG C L, QIN Y, FENG Z H, et al. Chronological characteristics and significance of Diaozhushan diabase in Longsheng, northern Guangxi[J]. Journal of Guilin University of Technology, 2020, 40(1):1-14.

    Google Scholar

    ZHANG C L, QIN Y, FENG Z H, et al. Chronological characteristics and significance of Diaozhushan diabase in Longsheng, northern Guangxi[J]. Journal of Guilin University of Technology, 2020, 40(1):1-14.

    Google Scholar

    [48] 秦亚. 桂北地区三门韧性剪切带的厘定及其构造意义[J]. 地球科学. 2021, 46(11): 4017-4032.QIN Y. Discovery of Sanmen ductile shear zone in North Guangxi and Its tectonic significances[J]. Earth Science, 2021, 46(11): 4017-4032.

    Google Scholar

    QIN Y. Discovery of Sanmen ductile shear zone in North Guangxi and Its tectonic significances[J]. Earth Science, 2021, 46(11): 4017-4032.

    Google Scholar

    [49] 秦亚, 冯佐海, 万磊, 等. 桂北龙胜上朗变镁铁质岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2022, a,52(1):109-133.QIN Y, FENG Z H, WAN L, et al. Zircon U-Pb age and its geological significance from Shanglang metamorphic mafic rocks in Longsheng, North China[J]. Journal of Jilin University (Earth Science Edition), 2022, a,52(1):109-133.

    Google Scholar

    QIN Y, FENG Z H, WAN L, et al. Zircon U-Pb age and its geological significance from Shanglang metamorphic mafic rocks in Longsheng, North China[J]. Journal of Jilin University (Earth Science Edition), 2022, a,52(1):109-133.

    Google Scholar

    [50] 蔡志慧, 许志琴, 何碧竹, 等. 东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程[J]. 岩石学报. 2012, 28(6): 1875-1895.CAI Z H, XU Z Q, HE B Z, et al. Age and tectonic evolution of ductile shear zones in the eastern Tianshan-Beishan orogenic belt[J]. Acta Petrologica Sinica. 2012, 28(6): 1875-1895.

    Google Scholar

    CAI Z H, XU Z Q, HE B Z, et al. Age and tectonic evolution of ductile shear zones in the eastern Tianshan-Beishan orogenic belt[J]. Acta Petrologica Sinica. 2012, 28(6): 1875-1895.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(442) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint