Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 45, No. 5
Article Contents

ZHANG Jujing, HUA Dongshen. Effect of Iron Tailings Powder on the Mechanical Properties and Calcium Hydroxide Content in Limestone Powder Concrete[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 176-183, 203. doi: 10.3969/j.issn.1000-6532.2024.05.025
Citation: ZHANG Jujing, HUA Dongshen. Effect of Iron Tailings Powder on the Mechanical Properties and Calcium Hydroxide Content in Limestone Powder Concrete[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 176-183, 203. doi: 10.3969/j.issn.1000-6532.2024.05.025

Effect of Iron Tailings Powder on the Mechanical Properties and Calcium Hydroxide Content in Limestone Powder Concrete

  • This is an article in the field of ceramics and composites. Influence of the mixed mineral powder content and proportion on the performance of concrete were studied. The results show that with the continuous increase of the proportion of mixed slag powder, the strength of the mixed slag powder concrete shows a change rule that first increases and then decreases. And the maximum value is achieved when the ratio of compound ore powder is 1∶2. Under the effect of the same number of freeze-thaw cycles, the mass loss rate of concrete shows a trend of first decreasing and then increasing with the increase of the proportion of mixed mineral powder. However the relative dynamic elastic modulus of concrete shows a trend of first increasing and then decreasing. At the same measuring position, as the proportion of compound slag powder increases, the chloride ion content in the compound slag powder concrete shows a continuous decrease. And when the ratio is 1∶2, the chloride ion content of the mixed slag powder concrete decreases faster. The comprehensive test results show that the strength characteristics of limestone tailings concrete are the best when the content of limestone tailings is 20%. The strength and durability of concrete reach the best when the ratio of mixed mineral powder is 1∶2.

  • 加载中
  • [1] 马卫华, 孟庆娟, 康洪震, 等. 铁尾矿砂混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2021, 42(S1):322-329.MA W H, MENG Q J, KANG H Z, et al. Experimental study on shear behavior of iron tailings concrete beams[J]. Journal of Building Structures, 2021, 42(S1):322-329.

    Google Scholar

    MA W H, MENG Q J, KANG H Z, et al. Experimental study on shear behavior of iron tailings concrete beams[J]. Journal of Building Structures, 2021, 42(S1):322-329.

    Google Scholar

    [2] 宁波, 闫艳, 左夏伟, 等. 铁尾矿砂混凝土力学特性实验研究[J]. 矿产综合利用, 2021(4):159-164.NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164. doi: 10.3969/j.issn.1000-6532.2021.04.025

    CrossRef Google Scholar

    NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164. doi: 10.3969/j.issn.1000-6532.2021.04.025

    CrossRef Google Scholar

    [3] 陈振富, 蔡双阳, 陶秋旺, 等. 铅锌尾矿砂混凝土抗压强度及屏蔽性能试验研究[J]. 混凝土, 2021(2):68-71+76.CHEN Z F, CAI S Y, TAO Q W, et al. Experimental study on compressive strength and shielding performance of lead-zinc tailings concrete[J]. Concrete, 2021(2):68-71+76. doi: 10.3969/j.issn.1002-3550.2021.02.017

    CrossRef Google Scholar

    CHEN Z F, CAI S Y, TAO Q W, et al. Experimental study on compressive strength and shielding performance of lead-zinc tailings concrete[J]. Concrete, 2021(2):68-71+76. doi: 10.3969/j.issn.1002-3550.2021.02.017

    CrossRef Google Scholar

    [4] 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1):175-183.XU J J, YANG S T, LIU Z N. Study on the bond performance between alkali-activated mineral powder seawater sand concrete and CFRP reinforcement[J]. Engineering Mechanics, 2019, 36(S1):175-183. doi: 10.6052/j.issn.1000-4750.2018.05.S036

    CrossRef Google Scholar

    XU J J, YANG S T, LIU Z N. Study on the bond performance between alkali-activated mineral powder seawater sand concrete and CFRP reinforcement[J]. Engineering Mechanics, 2019, 36(S1):175-183. doi: 10.6052/j.issn.1000-4750.2018.05.S036

    CrossRef Google Scholar

    [5] 侯云芬, 刘锦涛, 赵思儒, 等. 铁尾矿粉对水泥砂浆性能的影响及机理分析[J]. 应用基础与工程科学学报, 2019, 27(5):1149-1157.HOU Y F, LIU J T, ZHAO S R, et al. Effect of iron tailings powder on cement mortar performance and mechanism analysis[J]. Journal of Applied Basic and Engineering Sciences, 2019, 27(5):1149-1157.

    Google Scholar

    HOU Y F, LIU J T, ZHAO S R, et al. Effect of iron tailings powder on cement mortar performance and mechanism analysis[J]. Journal of Applied Basic and Engineering Sciences, 2019, 27(5):1149-1157.

    Google Scholar

    [6] 黄晓燕, 倪文, 李克庆. 铁尾矿粉制备高延性纤维增强水泥基复合材料[J]. 工程科学学报, 2015, 37(11):1491-1497.HUANG X Y, NI W, LI K Q. Preparation of high ductility fiber reinforced cement-based composites with iron tailings powder[J]. Journal of Engineering Science, 2015, 37(11):1491-1497.

    Google Scholar

    HUANG X Y, NI W, LI K Q. Preparation of high ductility fiber reinforced cement-based composites with iron tailings powder[J]. Journal of Engineering Science, 2015, 37(11):1491-1497.

    Google Scholar

    [7] 吴凯, 施惠生, 徐玲琳, 等. 集料对含矿粉混凝土抗硫酸镁侵蚀性能的影响[J]. 建筑材料学报, 2016, 19(3):442-448.WU K, SHI H S, XU L L, et al. Effect of aggregate on magnesium sulfate resistance of concrete containing mineral powder[J]. Journal of Building Materials, 2016, 19(3):442-448. doi: 10.3969/j.issn.1007-9629.2016.03.005

    CrossRef Google Scholar

    WU K, SHI H S, XU L L, et al. Effect of aggregate on magnesium sulfate resistance of concrete containing mineral powder[J]. Journal of Building Materials, 2016, 19(3):442-448. doi: 10.3969/j.issn.1007-9629.2016.03.005

    CrossRef Google Scholar

    [8] 管俊峰, 鲁猛, 王昊, 等. 几何与非几何相似试件确定混凝土韧度及强度[J]. 工程力学, 2021, 38(9):45-63.GUAN J F, LU M, WANG H, et al. Determination of concrete toughness and strength by geometric and non-geometric similar specimens[J]. Engineering Mechanics, 2021, 38(9):45-63 doi: 10.6052/j.issn.1000-4750.2020.08.0573

    CrossRef Google Scholar

    GUAN J F, LU M, WANG H, et al. Determination of concrete toughness and strength by geometric and non-geometric similar specimens[J]. Engineering Mechanics, 2021, 38(9):45-63 doi: 10.6052/j.issn.1000-4750.2020.08.0573

    CrossRef Google Scholar

    [9] 韩宇栋, 王振波, 刘伟康, 等. 不同强度海水珊瑚骨料混凝土断裂性能对比研究[J]. 建筑材料学报, 2021, 24(4):881-886.HAN Y D, WANG Z B, LIU W K, et al. Comparative study on fracture performance of seawater coral aggregate concrete with different strength[J]. Journal of Building Materials, 2021, 24(4):881-886.

    Google Scholar

    HAN Y D, WANG Z B, LIU W K, et al. Comparative study on fracture performance of seawater coral aggregate concrete with different strength[J]. Journal of Building Materials, 2021, 24(4):881-886.

    Google Scholar

    [10] 陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14):2348-2353.CHEN C, SUN Z P. Effect of silica fume on the performance of cement paste with or without alkali accelerator[J]. Material Guide, 2019, 33(14):2348-2353.

    Google Scholar

    CHEN C, SUN Z P. Effect of silica fume on the performance of cement paste with or without alkali accelerator[J]. Material Guide, 2019, 33(14):2348-2353.

    Google Scholar

    [11] 王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10):82-89.WANG S N, ZENG J J, FAN Z H. Durability analysis of marine high-performance concrete based on long-term exposure test[J]. Journal of Civil Engineering, 2021, 54(10):82-89.

    Google Scholar

    WANG S N, ZENG J J, FAN Z H. Durability analysis of marine high-performance concrete based on long-term exposure test[J]. Journal of Civil Engineering, 2021, 54(10):82-89.

    Google Scholar

    [12] 申爱琴, 杨景玉, 郭寅川, 等. SAP内养生水泥混凝土综述[J]. 交通运输工程学报, 2021, 21(4):1-31.SHEN A Q, YANG J Y, GUO Y C, et al. Overview of curing cement concrete in SAP[J]. Journal of Transportation Engineering, 2021, 21(4):1-31.

    Google Scholar

    SHEN A Q, YANG J Y, GUO Y C, et al. Overview of curing cement concrete in SAP[J]. Journal of Transportation Engineering, 2021, 21(4):1-31.

    Google Scholar

    [13] 张登祥, 蒋晓明. 大流动性高强轻集料混凝土约束收缩及抗裂性能研究[J]. 铁道学报, 2021, 43(5):190-196.ZHANG D X, JIANG X M. Research on restrained shrinkage and crack resistance of high strength lightweight aggregate concrete with large fluidity[J]. Journal of Railway, 2021, 43(5):190-196. doi: 10.3969/j.issn.1001-8360.2021.05.023

    CrossRef Google Scholar

    ZHANG D X, JIANG X M. Research on restrained shrinkage and crack resistance of high strength lightweight aggregate concrete with large fluidity[J]. Journal of Railway, 2021, 43(5):190-196. doi: 10.3969/j.issn.1001-8360.2021.05.023

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(387) PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint