Citation: | LI Haiyan, ZHANG Leihua, LI Fusong. Preparation of Foamed Ceramic Materials from Fly Ash and Blast Furnace Slags[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 161-167. doi: 10.3969/j.issn.1000-6532.2024.05.023 |
This is an article in the field of ceramics and composites.The high-temperature sintering method was used to prepare foamed ceramics by using fly ash and blast furnace slag as the main raw materials, adding silicon carbide (SiC) as a high temperature foaming agent and sodium borate (Na2B2O7) as a flux. The effects of raw material ratio, SiC addition and Na2B2O7 addition on the bubble structure, bulk density, water absorption, compressive strength and thermal conductivity of foamed ceramics were mainly studied. The experimental results showed that when the fly ash was 70%, the blast furnace slag was 30%, 0.3% SiC powder and 5% Na2B2O7 were added additionally, and the sintering temperature was 1 100℃ for 40 min, the foamed ceramic had the best comprehensive properties, and its bulk density was 0.516 g/cm3, with water absorption rate of 3.82%, compressive strength of 3.62 MPa, thermal conductivity of 0.094 W/(m·K). The main phases of the sample under this condition included quartz phase (SiO2), anorthite (CaAl2Si2O8) and pyroxene phase (Ca(Mg,Al,Fe)Si2O6), the massive precipitation of crystals enhanced the strength of the material. This research provided a new method for converting industrial solid wastes such as fly ash and blast furnace slag into high value-added building insulation materials.
[1] | 余江, 熊平, 刘建泉, 等. 以污泥、建筑垃圾为基料制备高强轻质发泡环保陶瓷板[J]. 四川大学学报(工程科学版), 2014, 46(5):161-167.YU J, XIONG P, LIU J Q, et al. Preparation of high-strength and light-weight environmental foaming ceramic plate using sludge and construction waste[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(5):161-167. YU J, XIONG P, LIU J Q, et al. Preparation of high-strength and light-weight environmental foaming ceramic plate using sludge and construction waste[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(5):161-167. |
[2] | 李林, 姜涛, 陈超, 等. 攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究[J]. 矿产综合利用, 2020(6):7-13+6.LI L, JIANG T, CHEN C, et al. Study on preparation of water-retaining foam ceramics from vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6):7-13+6. doi: 10.3969/j.issn.1000-6532.2020.06.002 LI L, JIANG T, CHEN C, et al. Study on preparation of water-retaining foam ceramics from vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6):7-13+6. doi: 10.3969/j.issn.1000-6532.2020.06.002 |
[3] | 赵威,韩硕,陈明堃. 钼尾矿基发泡陶瓷墙材的制备及其性能研究[J]. 商洛学院学报, 2021, 35(6):1-5+12.ZHAO W, HAN S, CHEN M K. Preparation of molybdenum tailings-based foamed ceramic wall material and its performance research[J]. Journal of Shangluo College, 2021, 35(6):1-5+12. ZHAO W, HAN S, CHEN M K. Preparation of molybdenum tailings-based foamed ceramic wall material and its performance research[J]. Journal of Shangluo College, 2021, 35(6):1-5+12. |
[4] | 聂轶苗, 夏淼, 刘攀攀, 等. 粉煤灰基矿物聚合材料研究进展[J]. 矿产综合利用, 2022(4):123-128.NIE Y M, XIA M, LIU P P, et al. Research progress on fly ash based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2022(4):123-128. doi: 10.3969/j.issn.1000-6532.2022.04.022 NIE Y M, XIA M, LIU P P, et al. Research progress on fly ash based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2022(4):123-128. doi: 10.3969/j.issn.1000-6532.2022.04.022 |
[5] | 康栋, 杨志杰, 张德. 粉煤灰中提取非晶态硅及硅产物的高值化利用[J]. 矿产综合利用, 2022(4):162-168.KANG D, YANG Z J, ZHANG D. Extraction of amorphous silicon from fly ash and high value utilization of silicon products[J]. Multipurpose Utilization of Mineral Resources, 2022(4):162-168. doi: 10.3969/j.issn.1000-6532.2022.04.028 KANG D, YANG Z J, ZHANG D. Extraction of amorphous silicon from fly ash and high value utilization of silicon products[J]. Multipurpose Utilization of Mineral Resources, 2022(4):162-168. doi: 10.3969/j.issn.1000-6532.2022.04.028 |
[6] | 刘梦茹, 杨亚东, 杨素洁, 等. 粉煤灰资源综合利用现状研究[J]. 化工矿物与加工, 2021, 50(4):45-48.LIU M R, YANG Y D, YANG S J, et al. Study on statues of comprehensive utilization of fly ash[J]. Industrial Minerals & Processing, 2021, 50(4):45-48. LIU M R, YANG Y D, YANG S J, et al. Study on statues of comprehensive utilization of fly ash[J]. Industrial Minerals & Processing, 2021, 50(4):45-48. |
[7] | 许莹, 李单单, 杨姗姗, 等. 含钛高炉渣综合利用研究进展[J]. 矿产综合利用, 2021(1):23-31.XU Y, LI D D, YANG S S, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):23-31. doi: 10.3969/j.issn.1000-6532.2021.01.004 XU Y, LI D D, YANG S S, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021(1):23-31. doi: 10.3969/j.issn.1000-6532.2021.01.004 |
[8] | 王海风, 张春霞, 齐渊洪, 等. 高炉渣处理技术的现状和新的发展趋势[J]. 钢铁, 2007(6):83-87.WANG H F, ZHANG C X, QI Y H, et al. Present situation and development trend of blast furnace slag treatment[J]. Iron and Steel, 2007(6):83-87. doi: 10.3321/j.issn:0449-749X.2007.06.019 WANG H F, ZHANG C X, QI Y H, et al. Present situation and development trend of blast furnace slag treatment[J]. Iron and Steel, 2007(6):83-87. doi: 10.3321/j.issn:0449-749X.2007.06.019 |
[9] | 刘洋, 张春霞. 钢铁渣的综合利用现状及发展趋势[J]. 矿产综合利用, 2019(2):26-30.LIU Y, ZHANG C X. Comprehensive utilization situation and development trend of iron and steel slag in China and abroad[J]. Multipurpose Utilization of Mineral Resources, 2019(2):26-30. doi: 10.3969/j.issn.1000-6532.2019.02.005 LIU Y, ZHANG C X. Comprehensive utilization situation and development trend of iron and steel slag in China and abroad[J]. Multipurpose Utilization of Mineral Resources, 2019(2):26-30. doi: 10.3969/j.issn.1000-6532.2019.02.005 |
[10] | 曾珍, 张雄. 建筑保温材料的发展[J]. 上海建材, 2005(4):28-30.ZENG Z, ZHANG X. Development of building insulation materials[J]. Shanghai Building Materials, 2005(4):28-30. doi: 10.3969/j.issn.1006-1177.2005.04.014 ZENG Z, ZHANG X. Development of building insulation materials[J]. Shanghai Building Materials, 2005(4):28-30. doi: 10.3969/j.issn.1006-1177.2005.04.014 |
[11] | LIU T Y, LI X Y, GUAN L M, et al. Low-cost and environment-friendly ceramic foams made from ead-zinc mine tailings and red mud: Foaming mechanism, physical, mechanical and chemical properties[J]. Ceramics International, 2016, 42(1):1733-1739. doi: 10.1016/j.ceramint.2015.09.131 |
[12] | 马子钧. 利用硅酸盐工业废(尾)矿制备发泡陶瓷的研究[D]. 北京: 北京工业大学, 2019.MA Z J. Preparation of foamed ceramics from silicate industrial waste (tailing) ore[D]. Beijing: Beijing University of Industry, 2019. MA Z J. Preparation of foamed ceramics from silicate industrial waste (tailing) ore[D]. Beijing: Beijing University of Industry, 2019. |
[13] | XI C P, ZHENG F, XU J H, et al. Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials[J]. Construction and Building Materials, 2018, 190:896-909. doi: 10.1016/j.conbuildmat.2018.09.170 |
[14] | CHEN X J, LU A X, QU G. Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent[J]. Ceramics International, 2013, 39(2):1923-1929. doi: 10.1016/j.ceramint.2012.08.042 |
XRD of fly ash and blast furnace slags
Cross-sections of foamed ceramics with different fly ash content
Effect of fly ash content on the bulk density, water absorption(a), compressive strength and thermal conductivity(b) of foamed ceramics
Cross-sections of foamed ceramics with different SiC addition
Effect of SiC addition on the bulk density, water absorption(a), compressive strength and thermal conductivity(b) of foamed ceramics
Cross-sections of foamed ceramics with different Na2B2O7 addition
Effect of Na2B2O7 addition on the bulk density, water absorption(a), compressive strength and thermal conductivity(b) of foamed ceramics
XRD of samples atoptimal condition