Citation: | ZHU Kaiqi, CHEN Jiafeng, TAO Yuqian, LI Haibin, YU Shui, QIU Jiayong. Preparation of Mn-Zn Spinel Ferrite by Solid-phase Sintering of Zinc-containing Electric Furnace Dust[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 141-147, 152. doi: 10.3969/j.issn.1000-6532.2024.05.020 |
This is an article in the field of metallurgical engineering. Mangane-zinc spinel ferrite has been widely used in various fields due to its advantages of high permeability, high frequency and low loss. In order to make full use of Fe, Zn, Mn and other elements in electric arc furnace dust (EAFD), Mn-Zn spinel ferrite was prepared by solid phase sintering method with alkali leaching zinc-containing EAFD as raw materials and MnSO4·H2O added. The effects of temperature, mass ratio (RZ/M) and pretreatment on the synthesis and magnetic properties of Mn-Zn ferrite were investigated by XRD, SEM-EDS and VSM. The results show that with the increase of reaction temperature, the speed of inter-grain merging in the Mn-Zn ferrite increases, the magnetic saturation induction and crystal grain size increase, and the coercivity decreases. When RZ/M changes to 1∶1.0, the magnetic saturation induction, coercivity and grain size increase. After pretreatment, the content of SiO2 in the EAFD decreases, and the magnetic saturation strength of the synthesized manganese-zinc ferrite increases. Therefore, after pretreatment with 2 mol/L alkali solution, the performance of manganzn-spinel ferrite synthesized at the condition of mass ratio 1∶1.0 and calcination temperature 1 100 ℃ is the best. Its saturation magnetic induction intensity (Ms) is 17.902 emu/g, and coercivity (Hc) is 3.21 kA/m.
[1] | 谭宇佳, 郭宇峰, 姜涛, 等. 含锌电炉粉尘处理工艺现状及发展[J]. 矿产综合利用, 2017(3):44-50.TAN Y J, GUO Y F, JIANG T, et al. Current Status and Development of Zinc-containing Electric Furnace Dust Treatment Proces[J]. Multipurpose Utilization of Mineral Resources, 2017(3):44-50. doi: 10.3969/j.issn.1000-6532.2017.03.007 TAN Y J, GUO Y F, JIANG T, et al. Current Status and Development of Zinc-containing Electric Furnace Dust Treatment Proces[J]. Multipurpose Utilization of Mineral Resources, 2017(3):44-50. doi: 10.3969/j.issn.1000-6532.2017.03.007 |
[2] | GAO J M, CHENG F. Effect of Metal Substitution on the Magnetic Properties of Spinel Ferrites Synthesized from Zinc-Bearing Dust[J]. Journal of Superconductivity and Novel Magnetism, 2018(7):1965-1970. |
[3] | WANG HG, LIU W, JIA N, et al. Facile synthesis of metal-doped Ni-Zn ferrite from treated Zn-containing electricarc furnace dust[J]. Ceramics International, 2017(2):1980-1987. |
[4] | 朱军, 李维亮, 刘曼博, 等. 锌湿法冶炼渣的污染物分析及综合利用技术[J]. 矿产综合利用, 2020(4):59-65.ZHU J, LI WL, LIU M B, etal. Analysis of Contaminants and Comprehensive Utilization Technology of Zinc Hydrometallurgical Slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):59-65. doi: 10.3969/j.issn.1000-6532.2020.04.009 ZHU J, LI WL, LIU M B, etal. Analysis of Contaminants and Comprehensive Utilization Technology of Zinc Hydrometallurgical Slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):59-65. doi: 10.3969/j.issn.1000-6532.2020.04.009 |
[5] | 朱应旭, 李兴彬, 邓志敢, 等. 含锌电炉烟尘氨浸预处理研究[J]. 有色金属工程, 2019(11):45-52.ZHU Y X, LI X B, DENG Z G, et al. Study on Ammonia Leaching Pretreatment of Zinc-containing Electric Are Furnace[J]. Nonferrous Metals Engineering, 2019(11):45-52. ZHU Y X, LI X B, DENG Z G, et al. Study on Ammonia Leaching Pretreatment of Zinc-containing Electric Are Furnace[J]. Nonferrous Metals Engineering, 2019(11):45-52. |
[6] | 张晋霞, 冯洪均, 王龙, 等. 含锌冶金尘泥氨浸溶蚀实验研究[J]. 矿产综合利用, 2021(1):124-129.Zhang J X, Feng H J, Wang L, et al. Study on Treating zinc-bearing dust by Ammonia Leaching Process[J]. Multipurpose Utilization of Mineral Resources, 2021(1):124-129. doi: 10.3969/j.issn.1000-6532.2021.01.021 Zhang J X, Feng H J, Wang L, et al. Study on Treating zinc-bearing dust by Ammonia Leaching Process[J]. Multipurpose Utilization of Mineral Resources, 2021(1):124-129. doi: 10.3969/j.issn.1000-6532.2021.01.021 |
[7] | 张家敏, 易建宏, 甘国友, 等. 微波烧结制备Mn-Zn铁氧体软磁材料[J]. 粉末冶金技术, 2014(3):204-210.ZHANG J M, YI J H, GAN G Y, et al. Microwave sintering of Mn-Zn ferrite soft magnetic materials[J]. Powder Metallurgy Technology, 2014(3):204-210. ZHANG J M, YI J H, GAN G Y, et al. Microwave sintering of Mn-Zn ferrite soft magnetic materials[J]. Powder Metallurgy Technology, 2014(3):204-210. |
[8] | 张家敏, 易建宏, 甘国友. 微波烧结Mn-Zn铁氧体的微观结构演变特征[J]. 材料科学与工艺, 2014(2):17-23.ZHANG J M, YI J H, GAN G Y, et al. Microstructure characteristics of microwave sintered Mn-Zn ferrite soft magnetic materials[J]. Materials Science and Technology, 2014(2):17-23. doi: 10.11951/j.issn.1005-0299.20140204 ZHANG J M, YI J H, GAN G Y, et al. Microstructure characteristics of microwave sintered Mn-Zn ferrite soft magnetic materials[J]. Materials Science and Technology, 2014(2):17-23. doi: 10.11951/j.issn.1005-0299.20140204 |
[9] | 马爱元, 郑雪梅, 李松, 等. 含锌钢铁冶金渣尘处理技术现状[J]. 矿产综合利用, 2020(4):1-7.MA A Y, ZHENG X M, LIS, et al. Present Situation of Zinc Metallurgical Slags and Dusts Treatment Technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):1-7. doi: 10.3969/j.issn.1000-6532.2020.04.001 MA A Y, ZHENG X M, LIS, et al. Present Situation of Zinc Metallurgical Slags and Dusts Treatment Technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):1-7. doi: 10.3969/j.issn.1000-6532.2020.04.001 |
[10] | 刘敏, 陈奕初, 张珂, 等. 预压压强对镍锌铁氧体微观结构和磁性能的影响[J]. 磁性材料及器件, 2021(3):68-71.LIU M, CHEN Y C, ZHANG K, et al. Effect of preloading pressure on the microstructure and magnetic properties of NiZn ferrite[J]. Journal of Magnetic Materials and Devices, 2021(3):68-71. LIU M, CHEN Y C, ZHANG K, et al. Effect of preloading pressure on the microstructure and magnetic properties of NiZn ferrite[J]. Journal of Magnetic Materials and Devices, 2021(3):68-71. |
[11] | 王飞飞, 王琴琴, 张英才, 等. 锰锌铁氧体的制备及应用进展[J]. 铜仁学院学报, 2017(12):50-54.WANG F F, WANG Q Q, ZHANG Y C, et al. Research Development on the Fabrication and Application of Manganese Zinc Ferrite Materials[J]. Journal of Tongren University, 2017(12):50-54. doi: 10.3969/j.issn.1673-9639.2017.12.012 WANG F F, WANG Q Q, ZHANG Y C, et al. Research Development on the Fabrication and Application of Manganese Zinc Ferrite Materials[J]. Journal of Tongren University, 2017(12):50-54. doi: 10.3969/j.issn.1673-9639.2017.12.012 |
[12] | KEBEDE K. KEFENI, TITUS A. M. MSAGATI, BHEKIE B. MAMBA. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device[J]. Materials Science and Engineering, 2017(1):37-55. |
[13] | 李佳伟, 李解, 林嘉威, 等. 白云鄂博超级铁精矿固相烧结制备M型锶铁氧体[J]. 有色金属工程, 2020(12):29-37.LI J W, LI J, LIN J W, et al. M-type Strontium Ferrite Prepared from Bayan Obo Super Iron Concentrate by Solid State Sintering[J]. Nonferrous Metals Engineering, 2020(12):29-37. doi: 10.3969/j.issn.2095-1744.2020.12.005 LI J W, LI J, LIN J W, et al. M-type Strontium Ferrite Prepared from Bayan Obo Super Iron Concentrate by Solid State Sintering[J]. Nonferrous Metals Engineering, 2020(12):29-37. doi: 10.3969/j.issn.2095-1744.2020.12.005 |
[14] | GAO J M, YAN Z K, JING L, et al. Synthesis, structure and magnetic properties of Zn substituted Ni-Co-Mn-Mg ferrites[J]. Materials Letters, 2015(15):122-124. |
[15] | 丁文澜. 环境温度对永磁铁氧体球磨的影响[J]. 中国粉体技术, 2014(1):43-46.DING W L. Effect of Ambient Temperature on Permanent Ferrite Ball Milling[J]. China Powder Science and Technology, 2014(1):43-46. doi: 10.3969/j.issn.1008-5548.2014.01.010 DING W L. Effect of Ambient Temperature on Permanent Ferrite Ball Milling[J]. China Powder Science and Technology, 2014(1):43-46. doi: 10.3969/j.issn.1008-5548.2014.01.010 |
[16] | 席国喜, 李伟伟, 路迈西. Mn-Zn铁氧体掺杂改性研究进展[J]. 磁性材料及器件, 2007(2):19-22.XI G X, LI W W, LU M X, et al. Research Advance in Property Modification of Mn-Zn Ferrites by Doping and Substituing[J]. Journal of Magnetic Materials and Devices, 2007(2):19-22. doi: 10.3969/j.issn.1001-3830.2007.02.004 XI G X, LI W W, LU M X, et al. Research Advance in Property Modification of Mn-Zn Ferrites by Doping and Substituing[J]. Journal of Magnetic Materials and Devices, 2007(2):19-22. doi: 10.3969/j.issn.1001-3830.2007.02.004 |
[17] | GHARAGOZLOU M. Synthesis, characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method[J]. Journal of Alloys and Compounds, 2009(1):660-665. |
[18] | Birajdar A A, Shirsath S E, Kadam R H, et al. Role of Cr3+ ions on the microstructure development, and magnetic phase evolution of Ni0.7Zn0.3Fe2O4 ferrite nanoparticles[J]. Journal of Alloys and Compounds, 2012(1):316-322. |
[19] | 陈昌, 李杨, 张岩昊, 等. 电炉粉尘预处理对其合成Ni-Zn铁氧体性能的影响[J]. 钢铁研究学报, 2019(7):628-636.CHEN C, LI Y, ZHANG Y H, et al. Effect of pretreatment on magnetic property of synthesized Ni-Zn ferrite from electric arc furnace dust[J]. Journal of Iron and Steel Research, 2019(7):628-636. CHEN C, LI Y, ZHANG Y H, et al. Effect of pretreatment on magnetic property of synthesized Ni-Zn ferrite from electric arc furnace dust[J]. Journal of Iron and Steel Research, 2019(7):628-636. |
XRD pattern of zinc-containing electric furnace dust
Synthesis of Mn-Zn spinel ferrite at different temperatures
SEM of Mn-Zn spinel ferrite prepared at different calcination temperatures (a) 800 ℃; (b) 900 ℃; (c) 1 000 ℃; (d) 1 100 ℃
Preparation of Mn-Zn spinel ferrite at different calcination temperatures (a) Hysteresis loop and (b) Ms, Hc
Primary grain size D of the crystal plane of ferrite (311) synthesized at different temperatures
Synthesis of Mn-Zn ferrite with different mass ratio
SEM of Mn-Zn spinel ferrite prepared by precursor (0.7~1.0) solid phase method
Precursor (0.7~1.0) solid phase method for preparing Mn-Zn spinel ferrite (a) Hysteresis loop (b) Ms,Hc
Primary grain size D of the (311) crystal plane of synthetic ferrite with different mass ratio (RZ/M)
Hysteresis loop of Mn-Zn spinel ferrite before and after pretreatment
(a)SEM and (b)EDS of Mn-Zn ferrite synthesized under optimized process (RZ/M=1∶1.0, 1 100 ℃)