Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 45, No. 5
Article Contents

MING Pingtian, LI Fei, CHEN Ziqiang, XIONG Zhaohua, HU Mengzhong. Practice and Application of Regrinding and Re-election of Swept Concentrate from a Low-grade Difficult Gold Ore in Qinghai Province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 15-23. doi: 10.3969/j.issn.1000-6532.2024.05.003
Citation: MING Pingtian, LI Fei, CHEN Ziqiang, XIONG Zhaohua, HU Mengzhong. Practice and Application of Regrinding and Re-election of Swept Concentrate from a Low-grade Difficult Gold Ore in Qinghai Province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 15-23. doi: 10.3969/j.issn.1000-6532.2024.05.003

Practice and Application of Regrinding and Re-election of Swept Concentrate from a Low-grade Difficult Gold Ore in Qinghai Province

More Information
  • This is an article in the field of mining processing engineering. The gold grade of a low-grade, high-arsenic, high-carbon refractory gold ore in Qinghai is about 2.38 g/t, and the industrial recovery rate of gold is about 77%. Through process flow investigation and mineralogical analysis, the gold grade of the mine's concentrator scavenging concentrate is about 3~6 g/t. The main gold-bearing minerals, arsenopyrite and pyrite, have low dissociation degrees of 76.23% and 78.74%, respectively. When floated separately, the gold recovery rate is about 30%~50%. In order to further improve the recovery rate of gold in this refractory gold mine, the mine conducted laboratory simulation of the process flow of the concentrator to carry out the experimental study of regrinding and re-separation of the scavenging concentrate, formulated the process flow scheme of returning the scavenging concentrate to the second stage grading pump pool in a centralized manner, and completed the process technology improvement design and process technology improvement practice of the concentrator. The production application results after the technological transformation showed that the single dissociation degree of the main gold-bearing minerals, arsenopyrite and pyrite, increased to 78.03% and 80.63% respectively when the scavenging concentrate was returned in a centralized manner, compared to the sequential return. The regrinding and re-separation process of the scavenging concentrate did not affect the grade of the concentrate under the premise of centralized return. The recovery rate of gold in the concentrator was increased from 77.14% to 81.13%, effectively improving the gold recovery index of this refractory gold mine.

  • 加载中
  • [1] 康维刚, 陈京玉. 老挝某金矿石重选-环保药剂浸金研究[J]. 贵金属, 2022, 43(1):61-66.KANG W G, CHEN J Y. Study on gravity separation and environmental friendly agent leaching of a gold ore in Laos[J]. Precious Metals, 2022, 43(1):61-66. doi: 10.3969/j.issn.1004-0676.2022.01.011

    CrossRef Google Scholar

    KANG W G, CHEN J Y. Study on gravity separation and environmental friendly agent leaching of a gold ore in Laos[J]. Precious Metals, 2022, 43(1):61-66. doi: 10.3969/j.issn.1004-0676.2022.01.011

    CrossRef Google Scholar

    [2] 石宝宝, 杨晓峰, 翟存楼, 等. 山东某低品位金矿工艺矿物学[J]. 矿产综合利用, 2022(6):184-188.SHI B B, YANG X F, ZHAI C L, et al. Detailed study on technological mineralogy of a low grade gold ore in Shandong[J]. Multipurpose Utilization of Mineral Resources, 2022(6):184-188. doi: 10.3969/j.issn.1000-6532.2022.06.031

    CrossRef Google Scholar

    SHI B B, YANG X F, ZHAI C L, et al. Detailed study on technological mineralogy of a low grade gold ore in Shandong[J]. Multipurpose Utilization of Mineral Resources, 2022(6):184-188. doi: 10.3969/j.issn.1000-6532.2022.06.031

    CrossRef Google Scholar

    [3] 孙晓妍, 周永星, 宋宝旭, 等. 山东某含金硫铁矿强化浮选回收实验研究[J]. 贵金属, 2022, 43(3):50-55.SUN X Y, ZHOU Y X, SONG B X, et al. Experimental study on enhanced flotation recovery of an gold-bearing on Shandong Province[J]. Precious Metals, 2022, 43(3):50-55. doi: 10.3969/j.issn.1004-0676.2022.03.009

    CrossRef Google Scholar

    SUN X Y, ZHOU Y X, SONG B X, et al. Experimental study on enhanced flotation recovery of an gold-bearing on Shandong Province[J]. Precious Metals, 2022, 43(3):50-55. doi: 10.3969/j.issn.1004-0676.2022.03.009

    CrossRef Google Scholar

    [4] 冯大伟, 王玲. 选冶联合处理低品位含金尾矿的实验研究[J]. 黄金科学技术, 2021, 29(2):315-323.FENG D W, WANG L. Experimental research on treatment of low-grade gold-bearing tailings by combined process of concentration and smelting[J]. Gold Science and Technology, 2021, 29(2):315-323.

    Google Scholar

    FENG D W, WANG L. Experimental research on treatment of low-grade gold-bearing tailings by combined process of concentration and smelting[J]. Gold Science and Technology, 2021, 29(2):315-323.

    Google Scholar

    [5] 李林积, 王丹, 邱鹏玉. 西秦岭格尔托金矿金的赋存状态及可选性实验研究[J]. 矿产综合利用, 2019(4):83-86.LI L J, WANG D, QIU P Y. Experimental study on occurrence and optionality of gold in Gelto gold deposit, western Qinling[J]. Multipurpose Utilization of Mineral Resources, 2019(4):83-86. doi: 10.3969/j.issn.1000-6532.2019.04.017

    CrossRef Google Scholar

    LI L J, WANG D, QIU P Y. Experimental study on occurrence and optionality of gold in Gelto gold deposit, western Qinling[J]. Multipurpose Utilization of Mineral Resources, 2019(4):83-86. doi: 10.3969/j.issn.1000-6532.2019.04.017

    CrossRef Google Scholar

    [6] 何敏亭, 杨洪英, 牛桂强, 等. 焦家金矿低品位超细洗矿矿泥工艺矿物学研究[J]. 有色金属(选矿部分), 2022(2):16-23.HE M T, YANG H Y, NIU G Q, et al. Mineralogical study on low grade ultrafine sline washing process in Jiaojia Gold Mine[J]. Nonferrous Metals(Mineral Processing Section), 2022(2):16-23.

    Google Scholar

    HE M T, YANG H Y, NIU G Q, et al. Mineralogical study on low grade ultrafine sline washing process in Jiaojia Gold Mine[J]. Nonferrous Metals(Mineral Processing Section), 2022(2):16-23.

    Google Scholar

    [7] 张立征, 王彩霞, 赵福财. 甘肃某微细粒浸染型难处理金矿选矿实验研究[J]. 矿冶工程, 2011, 31(4):45-47.ZHANG L Z, WANG C X, ZHAO F C. Mineral processing experiments on fine-disseminated refractory god ore from Gansu[J]. Mining and Metallurgical Engineering, 2011, 31(4):45-47. doi: 10.3969/j.issn.0253-6099.2011.04.012

    CrossRef Google Scholar

    ZHANG L Z, WANG C X, ZHAO F C. Mineral processing experiments on fine-disseminated refractory god ore from Gansu[J]. Mining and Metallurgical Engineering, 2011, 31(4):45-47. doi: 10.3969/j.issn.0253-6099.2011.04.012

    CrossRef Google Scholar

    [8] 刘国晨. 某石英脉型金矿石选矿工艺开发实验研究[J]. 矿产综合利用, 2019(5):75-79.LIU G C. Experimental study on mineral processing development of a quartz vein type gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(5):75-79. doi: 10.3969/j.issn.1000-6532.2019.05.016

    CrossRef Google Scholar

    LIU G C. Experimental study on mineral processing development of a quartz vein type gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(5):75-79. doi: 10.3969/j.issn.1000-6532.2019.05.016

    CrossRef Google Scholar

    [9] 王普蓉, 徐国印, 苏刚. 昌宁含铁低品位高泥锡石矿重-磁选工艺研究 [J]. 矿产综合利用, 2022 (1): 136-141.WANG P R, XU G Y, SU G , et al. Study on gravity and magnetic separation process of an iron-containing low-grade and high slime tin ore in Changning[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 136-141.

    Google Scholar

    WANG P R, XU G Y, SU G , et al. Study on gravity and magnetic separation process of an iron-containing low-grade and high slime tin ore in Changning[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 136-141.

    Google Scholar

    [10] 蔡明明, 张文平, 徐超, 等. 某难选金矿物工艺矿物学研究[J]. 矿产综合利用, 2022(5):193-198.CAI M M, ZHANG W P, XU C, et al. Study on process mineralogy of a refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2022(5):193-198.

    Google Scholar

    CAI M M, ZHANG W P, XU C, et al. Study on process mineralogy of a refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2022(5):193-198.

    Google Scholar

    [11] 杨佐怀, 董越, 郭俊杰, 等, 新疆某金矿选冶联合工艺研究[J]. 矿产综合利用, 2022 (3): 121-125.YANG Z H, DONG Y, GUO J J, et al. Beneficiation and metallurgical process study for a gold mine in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2022 (3): 121-125.

    Google Scholar

    YANG Z H, DONG Y, GUO J J, et al. Beneficiation and metallurgical process study for a gold mine in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2022 (3): 121-125.

    Google Scholar

    [12] 石贵明, 周意超, 刘琴, 等. 广东大尖山某铅锌多金属矿石选矿实验[J]. 金属矿山. 2018(4): 88-92.SHI G M, ZHOU Y C, LIU Q, et al. Beneficiation test of a lead-zinc polymetallic ore from Dajianshan, Guangdong Province[J]. Metal Mine. 2018(4): 88-92.

    Google Scholar

    SHI G M, ZHOU Y C, LIU Q, et al. Beneficiation test of a lead-zinc polymetallic ore from Dajianshan, Guangdong Province[J]. Metal Mine. 2018(4): 88-92.

    Google Scholar

    [13] 苏志远. 某中等硫化物含砷碳微细粒浸染型难选矿石选矿生产实践[J]. 黄金, 2014, 35(12):49-53.SU Z Y. The beneficiation practice of a refractory ore containing medium sulphide and arsenic-carbon fine-grained disseminated ore[J]. Gold, 2014, 35(12):49-53. doi: 10.11792/hj20141213

    CrossRef Google Scholar

    SU Z Y. The beneficiation practice of a refractory ore containing medium sulphide and arsenic-carbon fine-grained disseminated ore[J]. Gold, 2014, 35(12):49-53. doi: 10.11792/hj20141213

    CrossRef Google Scholar

    [14] 钟国建, 肖骁, 龙渊, 等. 硫精矿立磨再磨再选回收铜实验研究[J]. 矿冶工程, 2016, 36(1):52-55.ZHONG G J, XIAO X, LONG Y, et al. Reclaiming copper minerals from sulfur concentrate after reground with vertical mill[J]. Mining and Metallurgical Engineering, 2016, 36(1):52-55. doi: 10.3969/j.issn.0253-6099.2016.01.013

    CrossRef Google Scholar

    ZHONG G J, XIAO X, LONG Y, et al. Reclaiming copper minerals from sulfur concentrate after reground with vertical mill[J]. Mining and Metallurgical Engineering, 2016, 36(1):52-55. doi: 10.3969/j.issn.0253-6099.2016.01.013

    CrossRef Google Scholar

    [15] 骆忠, 蒋太国, 李娜. 中矿集中再磨工艺对铜浮选指标的影响[J]. 矿冶工程, 2019, 28(1): 25-29.LUO Z, JIANG T G, LI N. Effect of centralized regrinding process of middings on copper flotation index[J]. Mining and Metallurgy, 2016, 36(1): 25-29.

    Google Scholar

    LUO Z, JIANG T G, LI N. Effect of centralized regrinding process of middings on copper flotation index[J]. Mining and Metallurgy, 2016, 36(1): 25-29.

    Google Scholar

    [16] 袁喜振, 苏敏, 邓林欣, 等. 谦比希铜矿的选矿指标优化实验[J]. 矿产综合利用, 2021, 6: 185-189.YUAN X Z, SU M, DENG L X, et al. Optimization test of beneficiation index of Chambishi copper mine[J]. Multipurpose Utilization of Mineral Resources, 2021, 6: 185-189.

    Google Scholar

    YUAN X Z, SU M, DENG L X, et al. Optimization test of beneficiation index of Chambishi copper mine[J]. Multipurpose Utilization of Mineral Resources, 2021, 6: 185-189.

    Google Scholar

    [17] 马世收. 七宝山金矿扫选精矿的分级再磨改造[J]. 金属矿山. 2003(4): 61-62.MA S S. Classification and regrinding reform of scavenging concentrate in Qibaoshan gold mine[J]. Metal Mine. 2003(4): 61-62. Print.

    Google Scholar

    MA S S. Classification and regrinding reform of scavenging concentrate in Qibaoshan gold mine[J]. Metal Mine. 2003(4): 61-62. Print.

    Google Scholar

    [18] 叶国华, 童雄, 张杰, 等. 某难选铜矿浮选新工艺实验研究[J]. 有色金属(选矿部分), 2006(6):16-23.YE G H, TONG X, ZHANG J, et al. Experimental study on a new flotation process for refractory copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2006(6):16-23.

    Google Scholar

    YE G H, TONG X, ZHANG J, et al. Experimental study on a new flotation process for refractory copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2006(6):16-23.

    Google Scholar

    [19] 王守敬. 华阳川铀多金属矿工艺矿物学研究. 金属矿山[J]. 2019(4): 122-126.WANG S J. Study on process mineralogy of Huayangchuan uranium polymetallic ore[J]. Metal Mine. 2019(4): 122-126.

    Google Scholar

    WANG S J. Study on process mineralogy of Huayangchuan uranium polymetallic ore[J]. Metal Mine. 2019(4): 122-126.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(11)

Article Metrics

Article views(283) PDF downloads(173) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint