Citation: | MING Pingtian, LI Fei, CHEN Ziqiang, XIONG Zhaohua, HU Mengzhong. Practice and Application of Regrinding and Re-election of Swept Concentrate from a Low-grade Difficult Gold Ore in Qinghai Province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 15-23. doi: 10.3969/j.issn.1000-6532.2024.05.003 |
This is an article in the field of mining processing engineering. The gold grade of a low-grade, high-arsenic, high-carbon refractory gold ore in Qinghai is about 2.38 g/t, and the industrial recovery rate of gold is about 77%. Through process flow investigation and mineralogical analysis, the gold grade of the mine's concentrator scavenging concentrate is about 3~6 g/t. The main gold-bearing minerals, arsenopyrite and pyrite, have low dissociation degrees of 76.23% and 78.74%, respectively. When floated separately, the gold recovery rate is about 30%~50%. In order to further improve the recovery rate of gold in this refractory gold mine, the mine conducted laboratory simulation of the process flow of the concentrator to carry out the experimental study of regrinding and re-separation of the scavenging concentrate, formulated the process flow scheme of returning the scavenging concentrate to the second stage grading pump pool in a centralized manner, and completed the process technology improvement design and process technology improvement practice of the concentrator. The production application results after the technological transformation showed that the single dissociation degree of the main gold-bearing minerals, arsenopyrite and pyrite, increased to 78.03% and 80.63% respectively when the scavenging concentrate was returned in a centralized manner, compared to the sequential return. The regrinding and re-separation process of the scavenging concentrate did not affect the grade of the concentrate under the premise of centralized return. The recovery rate of gold in the concentrator was increased from 77.14% to 81.13%, effectively improving the gold recovery index of this refractory gold mine.
[1] | 康维刚, 陈京玉. 老挝某金矿石重选-环保药剂浸金研究[J]. 贵金属, 2022, 43(1):61-66.KANG W G, CHEN J Y. Study on gravity separation and environmental friendly agent leaching of a gold ore in Laos[J]. Precious Metals, 2022, 43(1):61-66. doi: 10.3969/j.issn.1004-0676.2022.01.011 KANG W G, CHEN J Y. Study on gravity separation and environmental friendly agent leaching of a gold ore in Laos[J]. Precious Metals, 2022, 43(1):61-66. doi: 10.3969/j.issn.1004-0676.2022.01.011 |
[2] | 石宝宝, 杨晓峰, 翟存楼, 等. 山东某低品位金矿工艺矿物学[J]. 矿产综合利用, 2022(6):184-188.SHI B B, YANG X F, ZHAI C L, et al. Detailed study on technological mineralogy of a low grade gold ore in Shandong[J]. Multipurpose Utilization of Mineral Resources, 2022(6):184-188. doi: 10.3969/j.issn.1000-6532.2022.06.031 SHI B B, YANG X F, ZHAI C L, et al. Detailed study on technological mineralogy of a low grade gold ore in Shandong[J]. Multipurpose Utilization of Mineral Resources, 2022(6):184-188. doi: 10.3969/j.issn.1000-6532.2022.06.031 |
[3] | 孙晓妍, 周永星, 宋宝旭, 等. 山东某含金硫铁矿强化浮选回收实验研究[J]. 贵金属, 2022, 43(3):50-55.SUN X Y, ZHOU Y X, SONG B X, et al. Experimental study on enhanced flotation recovery of an gold-bearing on Shandong Province[J]. Precious Metals, 2022, 43(3):50-55. doi: 10.3969/j.issn.1004-0676.2022.03.009 SUN X Y, ZHOU Y X, SONG B X, et al. Experimental study on enhanced flotation recovery of an gold-bearing on Shandong Province[J]. Precious Metals, 2022, 43(3):50-55. doi: 10.3969/j.issn.1004-0676.2022.03.009 |
[4] | 冯大伟, 王玲. 选冶联合处理低品位含金尾矿的实验研究[J]. 黄金科学技术, 2021, 29(2):315-323.FENG D W, WANG L. Experimental research on treatment of low-grade gold-bearing tailings by combined process of concentration and smelting[J]. Gold Science and Technology, 2021, 29(2):315-323. FENG D W, WANG L. Experimental research on treatment of low-grade gold-bearing tailings by combined process of concentration and smelting[J]. Gold Science and Technology, 2021, 29(2):315-323. |
[5] | 李林积, 王丹, 邱鹏玉. 西秦岭格尔托金矿金的赋存状态及可选性实验研究[J]. 矿产综合利用, 2019(4):83-86.LI L J, WANG D, QIU P Y. Experimental study on occurrence and optionality of gold in Gelto gold deposit, western Qinling[J]. Multipurpose Utilization of Mineral Resources, 2019(4):83-86. doi: 10.3969/j.issn.1000-6532.2019.04.017 LI L J, WANG D, QIU P Y. Experimental study on occurrence and optionality of gold in Gelto gold deposit, western Qinling[J]. Multipurpose Utilization of Mineral Resources, 2019(4):83-86. doi: 10.3969/j.issn.1000-6532.2019.04.017 |
[6] | 何敏亭, 杨洪英, 牛桂强, 等. 焦家金矿低品位超细洗矿矿泥工艺矿物学研究[J]. 有色金属(选矿部分), 2022(2):16-23.HE M T, YANG H Y, NIU G Q, et al. Mineralogical study on low grade ultrafine sline washing process in Jiaojia Gold Mine[J]. Nonferrous Metals(Mineral Processing Section), 2022(2):16-23. HE M T, YANG H Y, NIU G Q, et al. Mineralogical study on low grade ultrafine sline washing process in Jiaojia Gold Mine[J]. Nonferrous Metals(Mineral Processing Section), 2022(2):16-23. |
[7] | 张立征, 王彩霞, 赵福财. 甘肃某微细粒浸染型难处理金矿选矿实验研究[J]. 矿冶工程, 2011, 31(4):45-47.ZHANG L Z, WANG C X, ZHAO F C. Mineral processing experiments on fine-disseminated refractory god ore from Gansu[J]. Mining and Metallurgical Engineering, 2011, 31(4):45-47. doi: 10.3969/j.issn.0253-6099.2011.04.012 ZHANG L Z, WANG C X, ZHAO F C. Mineral processing experiments on fine-disseminated refractory god ore from Gansu[J]. Mining and Metallurgical Engineering, 2011, 31(4):45-47. doi: 10.3969/j.issn.0253-6099.2011.04.012 |
[8] | 刘国晨. 某石英脉型金矿石选矿工艺开发实验研究[J]. 矿产综合利用, 2019(5):75-79.LIU G C. Experimental study on mineral processing development of a quartz vein type gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(5):75-79. doi: 10.3969/j.issn.1000-6532.2019.05.016 LIU G C. Experimental study on mineral processing development of a quartz vein type gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(5):75-79. doi: 10.3969/j.issn.1000-6532.2019.05.016 |
[9] | 王普蓉, 徐国印, 苏刚. 昌宁含铁低品位高泥锡石矿重-磁选工艺研究 [J]. 矿产综合利用, 2022 (1): 136-141.WANG P R, XU G Y, SU G , et al. Study on gravity and magnetic separation process of an iron-containing low-grade and high slime tin ore in Changning[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 136-141. WANG P R, XU G Y, SU G , et al. Study on gravity and magnetic separation process of an iron-containing low-grade and high slime tin ore in Changning[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 136-141. |
[10] | 蔡明明, 张文平, 徐超, 等. 某难选金矿物工艺矿物学研究[J]. 矿产综合利用, 2022(5):193-198.CAI M M, ZHANG W P, XU C, et al. Study on process mineralogy of a refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2022(5):193-198. CAI M M, ZHANG W P, XU C, et al. Study on process mineralogy of a refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2022(5):193-198. |
[11] | 杨佐怀, 董越, 郭俊杰, 等, 新疆某金矿选冶联合工艺研究[J]. 矿产综合利用, 2022 (3): 121-125.YANG Z H, DONG Y, GUO J J, et al. Beneficiation and metallurgical process study for a gold mine in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2022 (3): 121-125. YANG Z H, DONG Y, GUO J J, et al. Beneficiation and metallurgical process study for a gold mine in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2022 (3): 121-125. |
[12] | 石贵明, 周意超, 刘琴, 等. 广东大尖山某铅锌多金属矿石选矿实验[J]. 金属矿山. 2018(4): 88-92.SHI G M, ZHOU Y C, LIU Q, et al. Beneficiation test of a lead-zinc polymetallic ore from Dajianshan, Guangdong Province[J]. Metal Mine. 2018(4): 88-92. SHI G M, ZHOU Y C, LIU Q, et al. Beneficiation test of a lead-zinc polymetallic ore from Dajianshan, Guangdong Province[J]. Metal Mine. 2018(4): 88-92. |
[13] | 苏志远. 某中等硫化物含砷碳微细粒浸染型难选矿石选矿生产实践[J]. 黄金, 2014, 35(12):49-53.SU Z Y. The beneficiation practice of a refractory ore containing medium sulphide and arsenic-carbon fine-grained disseminated ore[J]. Gold, 2014, 35(12):49-53. doi: 10.11792/hj20141213 SU Z Y. The beneficiation practice of a refractory ore containing medium sulphide and arsenic-carbon fine-grained disseminated ore[J]. Gold, 2014, 35(12):49-53. doi: 10.11792/hj20141213 |
[14] | 钟国建, 肖骁, 龙渊, 等. 硫精矿立磨再磨再选回收铜实验研究[J]. 矿冶工程, 2016, 36(1):52-55.ZHONG G J, XIAO X, LONG Y, et al. Reclaiming copper minerals from sulfur concentrate after reground with vertical mill[J]. Mining and Metallurgical Engineering, 2016, 36(1):52-55. doi: 10.3969/j.issn.0253-6099.2016.01.013 ZHONG G J, XIAO X, LONG Y, et al. Reclaiming copper minerals from sulfur concentrate after reground with vertical mill[J]. Mining and Metallurgical Engineering, 2016, 36(1):52-55. doi: 10.3969/j.issn.0253-6099.2016.01.013 |
[15] | 骆忠, 蒋太国, 李娜. 中矿集中再磨工艺对铜浮选指标的影响[J]. 矿冶工程, 2019, 28(1): 25-29.LUO Z, JIANG T G, LI N. Effect of centralized regrinding process of middings on copper flotation index[J]. Mining and Metallurgy, 2016, 36(1): 25-29. LUO Z, JIANG T G, LI N. Effect of centralized regrinding process of middings on copper flotation index[J]. Mining and Metallurgy, 2016, 36(1): 25-29. |
[16] | 袁喜振, 苏敏, 邓林欣, 等. 谦比希铜矿的选矿指标优化实验[J]. 矿产综合利用, 2021, 6: 185-189.YUAN X Z, SU M, DENG L X, et al. Optimization test of beneficiation index of Chambishi copper mine[J]. Multipurpose Utilization of Mineral Resources, 2021, 6: 185-189. YUAN X Z, SU M, DENG L X, et al. Optimization test of beneficiation index of Chambishi copper mine[J]. Multipurpose Utilization of Mineral Resources, 2021, 6: 185-189. |
[17] | 马世收. 七宝山金矿扫选精矿的分级再磨改造[J]. 金属矿山. 2003(4): 61-62.MA S S. Classification and regrinding reform of scavenging concentrate in Qibaoshan gold mine[J]. Metal Mine. 2003(4): 61-62. Print. MA S S. Classification and regrinding reform of scavenging concentrate in Qibaoshan gold mine[J]. Metal Mine. 2003(4): 61-62. Print. |
[18] | 叶国华, 童雄, 张杰, 等. 某难选铜矿浮选新工艺实验研究[J]. 有色金属(选矿部分), 2006(6):16-23.YE G H, TONG X, ZHANG J, et al. Experimental study on a new flotation process for refractory copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2006(6):16-23. YE G H, TONG X, ZHANG J, et al. Experimental study on a new flotation process for refractory copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2006(6):16-23. |
[19] | 王守敬. 华阳川铀多金属矿工艺矿物学研究. 金属矿山[J]. 2019(4): 122-126.WANG S J. Study on process mineralogy of Huayangchuan uranium polymetallic ore[J]. Metal Mine. 2019(4): 122-126. WANG S J. Study on process mineralogy of Huayangchuan uranium polymetallic ore[J]. Metal Mine. 2019(4): 122-126. |
Original process flow chart
Process flow of grinding and floatation after technical transformation