Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 45, No. 5
Article Contents

YAO Dongdong, JIAO Fen, JIA Wenhao, WEI Qian, PAN Zuchao, XIONG Jingjing. 2-hydroxyphosphonoacetic Acid to Eliminate the Adverse Effect of Serpentine on Chalcopyrite Flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 1-8. doi: 10.3969/j.issn.1000-6532.2024.05.001
Citation: YAO Dongdong, JIAO Fen, JIA Wenhao, WEI Qian, PAN Zuchao, XIONG Jingjing. 2-hydroxyphosphonoacetic Acid to Eliminate the Adverse Effect of Serpentine on Chalcopyrite Flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 1-8. doi: 10.3969/j.issn.1000-6532.2024.05.001

2-hydroxyphosphonoacetic Acid to Eliminate the Adverse Effect of Serpentine on Chalcopyrite Flotation

  • This is an article in the field of mineral processing engineering. For the flotation of sulfide ores whose gangue mineral is serpentine, serpentine can deteriorate the flotation of sulfide ores due to its easy mudification. To solve this problem, 2-hydroxyphosphonoacetic acid (HPAA) was used for the first time in this paper to eliminate the negative effect of serpentine on chalcopyrite flotation. In this article, the effect of HPAA on chalcopyrite/serpentine flotation system and the mechanism of action were investigated by microflotation test, turbidity test, zeta potential test, adsorption amount test and XPS test. The tests showed that serpentine is positively charged and chalcopyrite is negatively charged. Due to the electrostatic attraction, serpentine slime will adsorb on the surface of chalcopyrite, thus inhibiting the flotation of chalcopyrite. After adding HPAA, the flotation recovery of chalcopyrite was increased from 47.85% to 92.44%. The mechanism was that HPAA chemisorbed with Mg2+ of serpentine, which significantly reduced the surface potential of serpentine and caused repulsive effect on mineral particles, thus recovering the floatability of chalcopyrite.

  • 加载中
  • [1] 张本曰, 刘丹, 郭锐, 等. 含镍蛇纹石的综合利用现状[J]. 矿产综合利用, 2020(4):13-20.ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):13-20.

    Google Scholar

    ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):13-20.

    Google Scholar

    [2] 谢杰, 胡春梅. 国内外硫化铜镍矿选矿现状及未来发展方向[J]. 矿产保护与利用, 2018(5):143-150.XIE J, HU C M. Current status and future development of dressing technology on the sulfide nickel -copper ore at home and abroad[J]. Multipurpose Utilization of Mineral Resources, 2018(5):143-150.

    Google Scholar

    XIE J, HU C M. Current status and future development of dressing technology on the sulfide nickel -copper ore at home and abroad[J]. Multipurpose Utilization of Mineral Resources, 2018(5):143-150.

    Google Scholar

    [3] 贾木欣, 孙传尧, 费涌初, 等. 金川矿石中脉石矿物易浮原因的探讨[J]. 矿冶, 2007(3):95-100.JIA M X, SUN C Y, FEI Y C, et al. Study on the causes of the high flotabilty of Jinchuan gangue minerals[J]. Mining and Metallurgy, 2007(3):95-100.

    Google Scholar

    JIA M X, SUN C Y, FEI Y C, et al. Study on the causes of the high flotabilty of Jinchuan gangue minerals[J]. Mining and Metallurgy, 2007(3):95-100.

    Google Scholar

    [4] 李锐, 都兴红, 邓水林, 等. 含镍蛇纹石浮选降镁实验研究[J]. 矿产综合利用, 2013(4):17-21.LI R, DU X H, DENG S L, et al. Study on magnesium reduction by flotation of nickel serpentine[J]. Multipurpose Utilization of Mineral Resources, 2013(4):17-21.

    Google Scholar

    LI R, DU X H, DENG S L, et al. Study on magnesium reduction by flotation of nickel serpentine[J]. Multipurpose Utilization of Mineral Resources, 2013(4):17-21.

    Google Scholar

    [5] 陈文亮, 方夕辉, 张帅, 等. 某低品位难选铜镍硫化矿高效降镁与铜镍分离[J]. 有色金属工程, 2014, 4(6):48-52.CHEN W L, FANG X H, ZHANG S, et al. Efficient magnesium reduction and copper-nickel separation of a low-grade refractory copper-nickel sulfide ore[J]. Nonferrous Metals Engineering, 2014, 4(6):48-52.

    Google Scholar

    CHEN W L, FANG X H, ZHANG S, et al. Efficient magnesium reduction and copper-nickel separation of a low-grade refractory copper-nickel sulfide ore[J]. Nonferrous Metals Engineering, 2014, 4(6):48-52.

    Google Scholar

    [6] 胡聪, 陈伟, 许鹏云. 酸性体系中蛇纹石矿泥的抑制及其对硫化铜镍矿浮选的影响[J]. 中国有色金属学报, 2021, 31(1):211-221.HU C, CHEN W, XU P Y. Suppression of serpentine slime in acid flotation and its effect on flotation of copper-nickel sulfide ore[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):211-221.

    Google Scholar

    HU C, CHEN W, XU P Y. Suppression of serpentine slime in acid flotation and its effect on flotation of copper-nickel sulfide ore[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):211-221.

    Google Scholar

    [7] 杜文平. 微细粒矿物浮选研究进展[J]. 铜业工程, 2017(2):63-68.DU W P. Research progress on micro-fine particles mineral flotation[J]. Copper Engineering, 2017(2):63-68.

    Google Scholar

    DU W P. Research progress on micro-fine particles mineral flotation[J]. Copper Engineering, 2017(2):63-68.

    Google Scholar

    [8] 赵玉卿, 黄秉雄, 刘磊, 等. 蛇纹石、绿泥石、滑石的可浮性及抑制方法综述[J]. 矿产综合利用, 2018(2):7-11.ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11.

    Google Scholar

    ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11.

    Google Scholar

    [9] 卢毅屏, 丁鹏, 冯其明, 等. 不同结构的磷酸盐对蛇纹石的分散作用[J]. 中南大学学报, 2011, 42(12):3599-3604.LU Y P, DING P, FENG Q M, et al. Dispersion effect of different structural phosphates on serpentine[J]. Journal of Central South University(Science and Technology), 2011, 42(12):3599-3604.

    Google Scholar

    LU Y P, DING P, FENG Q M, et al. Dispersion effect of different structural phosphates on serpentine[J]. Journal of Central South University(Science and Technology), 2011, 42(12):3599-3604.

    Google Scholar

    [10] 李治杭, 韩跃新, 李艳军, 等. 六偏磷酸钠对蛇纹石作用机理分析[J]. 矿产综合利用, 2016(4):52-55LI Z H, HAN Y X, LI Y J, et al. Mechanism of sodium hexametaphosphate on serpentine flotation[J]. Multipurpose Utilization of Mineral Resources, 2016(4):52-55.

    Google Scholar

    LI Z H, HAN Y X, LI Y J, et al. Mechanism of sodium hexametaphosphate on serpentine flotation[J]. Multipurpose Utilization of Mineral Resources, 2016(4):52-55.

    Google Scholar

    [11] 李小黎, 张其东, 王雷, 等. 六偏磷酸钠在镍黄铁矿/蛇纹石浮选体系的作用研究[J]. 矿产综合利用, 2021, 41(2):52-57.LI X L, ZHANG Q D, WANG L, et al. Effect mechanism of SHMP on flotation system of pentlandite and serpentine[J]. Multipurpose Utilization of Mineral Resources, 2021, 41(2):52-57.

    Google Scholar

    LI X L, ZHANG Q D, WANG L, et al. Effect mechanism of SHMP on flotation system of pentlandite and serpentine[J]. Multipurpose Utilization of Mineral Resources, 2021, 41(2):52-57.

    Google Scholar

    [12] 冯博, 冯其明, 卢毅屏. 羧甲基纤维素在蛇纹石/黄铁矿浮选体系中的分散机理[J]. 中南大学学报(自然科学版), 2013, 44(7):2644-2649.FENG B, FENG Q M, LU Y P. Effect mechanism of CMC on flotation system of serpentine and pyrite[J]. Journal of Central South University(Science and Technology), 2013, 44(7):2644-2649.

    Google Scholar

    FENG B, FENG Q M, LU Y P. Effect mechanism of CMC on flotation system of serpentine and pyrite[J]. Journal of Central South University(Science and Technology), 2013, 44(7):2644-2649.

    Google Scholar

    [13] 胡家城, 石晴, 荀骆冰, 等. 碳酸根和硫酸根对蛇纹石和黄铜矿矿浆流变性和浮选的影响[J]. 有色金属工程, 2020, 10(10):88-94.HU J C, SHI Q, XUN L B, et al. Effects of carbonate and sulface on rheology and flotation of serpentine and chalcopytite slurry[J]. Nonferrous Metals Engineering, 2020, 10(10):88-94.

    Google Scholar

    HU J C, SHI Q, XUN L B, et al. Effects of carbonate and sulface on rheology and flotation of serpentine and chalcopytite slurry[J]. Nonferrous Metals Engineering, 2020, 10(10):88-94.

    Google Scholar

    [14] 高佳齐, 罗立群, 彭铁锋, 等. 利用氟化钠消除蛇纹石对黄铁矿浮选不利影响的机理研究[J]. 化工矿物与加工, 2021, 50(7):31-34.GAO J Q, LUO L Q, PENG T F, et al. Study on the function of sodium fluoride to eliminate the adverse effect of serpentine on pyrite flotation behavior[J]. Industrial Minerals and Processing, 2021, 50(7):31-34.

    Google Scholar

    GAO J Q, LUO L Q, PENG T F, et al. Study on the function of sodium fluoride to eliminate the adverse effect of serpentine on pyrite flotation behavior[J]. Industrial Minerals and Processing, 2021, 50(7):31-34.

    Google Scholar

    [15] ZHOU X W, FENG B. The effect of polyether on the separation of pentlandite and serpentine[J]. Journal of Materials Research and Technology, 2015, 4(4):429-433. doi: 10.1016/j.jmrt.2015.02.002

    CrossRef Google Scholar

    [16] CAO J, TIAN X D, LUO Y C, et al. The effect of graphene oxide on the slime coatings of serpentine in the flotation of pentlandite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522:621-627.

    Google Scholar

    [17] TANG X K, CHEN Y F. Using oxalic acid to eliminate the slime coatings of serpentine in pyrite flotation[J]. Minerals Engineering, 2020, 149.

    Google Scholar

    [18] LIU D Z, ZHANG G F, CHEN Y F. Studies on the selective flotation of pyrite from fine serpentine by using citric acid as depressant[J]. Minerals Engineering, 2021, 165.

    Google Scholar

    [19] 王洪岭. 羧化壳聚糖对镍黄铁矿/蛇纹石浮选体系的作用机理[J]. 矿产综合利用, 2018(3):112-116.WANG H L. Dispersion mechanism on flotation system of pentlandite and serpentine in the presence of carboxylation chitosan[J]. Multipurpose Utilization of Mineral Resources, 2018(3):112-116.

    Google Scholar

    WANG H L. Dispersion mechanism on flotation system of pentlandite and serpentine in the presence of carboxylation chitosan[J]. Multipurpose Utilization of Mineral Resources, 2018(3):112-116.

    Google Scholar

    [20] LIU C, AI G H, SONG S X. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite[J]. Powder Technology, 2018, 336:527-32. doi: 10.1016/j.powtec.2018.06.030

    CrossRef Google Scholar

    [21] 张育, 李本高, 张金锐. 2-羟基膦基乙酸的性能及应用研究[J]. 石油化工腐蚀与防护, 1996, 13(1):32-34.ZHANG Y, LI B G, ZHANG J R. Study on properties and application of 2-hydroxyphosphonoacetic acid[J]. Corrosion and Protection in Petrochemical Industry, 1996, 13(1):32-34.

    Google Scholar

    ZHANG Y, LI B G, ZHANG J R. Study on properties and application of 2-hydroxyphosphonoacetic acid[J]. Corrosion and Protection in Petrochemical Industry, 1996, 13(1):32-34.

    Google Scholar

    [22] 孙水裕, 王淀佐, 李柏淡. 硫化钠对黄铜矿无捕收剂浮选的影响[J]. 有色金属, 1992, 44(3):42-47.SUN S Y, WANG D Z, LI B D. Effect of sodium sulfide on collectorless flotation of chalcopyrite[J]. Nonferrous Metals Engineering, 1992, 44(3):42-47.

    Google Scholar

    SUN S Y, WANG D Z, LI B D. Effect of sodium sulfide on collectorless flotation of chalcopyrite[J]. Nonferrous Metals Engineering, 1992, 44(3):42-47.

    Google Scholar

    [23] 刘豹, 郝良影, 李彩霞. 蛇纹石对黄铜矿浮选影响的研究[J]. 非金属矿, 2016, 39(5):19-22.LIU B, HAO L Y, LI C X. Study on the effect of serpentine and chalopyrite flotation[J]. Non-metallic Mines, 2016, 39(5):19-22.

    Google Scholar

    LIU B, HAO L Y, LI C X. Study on the effect of serpentine and chalopyrite flotation[J]. Non-metallic Mines, 2016, 39(5):19-22.

    Google Scholar

    [24] FENG B, LU Y P, FENG Q M, et al. Mechanisms of surface charge development of serpentine mineral[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4):1123-1128. doi: 10.1016/S1003-6326(13)62574-1

    CrossRef Google Scholar

    [25] DEMADIS K D, PAPADAKI M, RAPTIS R G, et al. Corrugated, sheet-like architectures in layered alkaline-earth metal R, S-Hydroxyphosphonoacetate frameworks: applications for anticorrosion protection of metal surfaces[J]. Chem Mater, 2008, 20:4835-4846. doi: 10.1021/cm801004w

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(207) PDF downloads(124) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint