Citation: | QIN Guanglin. Research on Process Mineralogy of a Refractory Lead-zinc Ore in Chengde, Hebei and Analysis of Factors Affecting Flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 99-103. doi: 10.3969/j.issn.1000-6532.2024.04.014 |
Based on fluorescence spectrum analysis and chemical multi-element analysis, through the process mineralogy study of a refractory lead-zinc mine in Hebei, the mineral composition, structure, main mineral embedding characteristics of the ore and the occurrence state of lead-zinc were found out. The results show that the lead content in the ore is 1.07%, and the lead minerals mainly exist in galena, accounting for 85.85%. The content of zinc is 2.08%. Zinc minerals mainly exist in sphalerite, accounting for 66.06%, and zinc oxide ore accounts for 22.43%, Galena is mainly embedded in contact with sphalerite and pyrite and metasomatized sphalerite and pyrite. The contact boundary is uneven, in harbor shape, sawtooth shape, nibbling shape, etc., with strong local metasomatism. Sphalerite is mainly in irregular heteromorphic grain structure, and a small amount is embedded in vein structure, which is distributed in disseminated shape in the ore. Through analysis, the embedded particle size of lead minerals in the raw ore is too fine and the continuous relationship with zinc flash minerals is complex, resulting in high zinc content in lead concentrate, high zinc oxidation rate, high zinc content in tailings and low zinc recovery rate.
[1] | 赵玉卿, 应用朋, 熊艳, 等. BPMA在某低品位铌钽矿工艺矿物学研究中的应用[J]. 矿产综合利用, 2021(5):129-134.ZHAO Y Q, YING Y P, XIONG Y, et al. Application of BPMA in process mineralogy of a low-grade Nb-Ta Ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5):129-134. doi: 10.3969/j.issn.1000-6532.2021.05.020 ZHAO Y Q, YING Y P, XIONG Y, et al. Application of BPMA in process mineralogy of a low-grade Nb-Ta Ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5):129-134. doi: 10.3969/j.issn.1000-6532.2021.05.020 |
[2] | 胡永兴, 宿虎, 张红斌, 等. 工艺矿物学研究在甘肃某铷矿应用[J]. 矿产综合利用, 2021(5):135-138.HU Y X, SU H, ZHANG H B, et al. Application of process minerals research in a rubidium mine in Gansu Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):135-138. doi: 10.3969/j.issn.1000-6532.2021.05.021 HU Y X, SU H, ZHANG H B, et al. Application of process minerals research in a rubidium mine in Gansu Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):135-138. doi: 10.3969/j.issn.1000-6532.2021.05.021 |
[3] | 罗先平, 何坤忠, 周贺鹏, 等. 青海夏乌日塔铜铅锌多金属矿工艺矿物学特征及浮选原则工艺的确定[J]. 金属矿山, 2022(4):122-129.LUO X P, HE K Z, ZHOU H P, et al. Process mineralogical characteristics and determination of flotation principle process of Xiawurita copper-lead-zinc mutil-metal ore in Qinghai[J]. Metal mine, 2022(4):122-129. LUO X P, HE K Z, ZHOU H P, et al. Process mineralogical characteristics and determination of flotation principle process of Xiawurita copper-lead-zinc mutil-metal ore in Qinghai[J]. Metal mine, 2022(4):122-129. |
[4] | 杨德明, 李飞, 邢晴晴, 等. 青海省五龙沟金矿原矿工艺矿物学研究[J]. 矿冶, 2021(4):140-146.YANG D M, LI F, XING Q Q, et al. Mineralogy research on gold mine in Wulonggou, Qinghai Province[J]. Mining and metallurgy, 2021(4):140-146. doi: 10.3969/j.issn.1005-7854.2021.04.022 YANG D M, LI F, XING Q Q, et al. Mineralogy research on gold mine in Wulonggou, Qinghai Province[J]. Mining and metallurgy, 2021(4):140-146. doi: 10.3969/j.issn.1005-7854.2021.04.022 |
[5] | 陈艳波, 李光胜, 朱幸福. 低毒环保药剂药效考察试验技术优化[J]. 山东化工, 2021, 50(18):143-144.CHEN Y B, LI G S, ZHU X F. Optimization of test technology for tfficacy in testigation of low loxic lnvironmental lrotection lgents[J]. Shandong Chemical Industry, 2021, 50(18):143-144. doi: 10.3969/j.issn.1008-021X.2021.18.051 CHEN Y B, LI G S, ZHU X F. Optimization of test technology for tfficacy in testigation of low loxic lnvironmental lrotection lgents[J]. Shandong Chemical Industry, 2021, 50(18):143-144. doi: 10.3969/j.issn.1008-021X.2021.18.051 |
[6] | 朱一民. 2020 年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118.ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019 ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019 |
[7] | 龙会友. 铅锌矿的选矿技术研究及工业应用的相关探讨[J]. 世界有色金属, 2018(19):63-65.LONG H Y. Research on beneficiation technology and industrial application of lead-zinc ore[J]. World Nonferrous Metals, 2018(19):63-65 doi: 10.3969/j.issn.1002-5065.2018.19.038 LONG H Y. Research on beneficiation technology and industrial application of lead-zinc ore[J]. World Nonferrous Metals, 2018(19):63-65 doi: 10.3969/j.issn.1002-5065.2018.19.038 |
[8] | 王伟之, 李学军, 陈丽平. 辽宁某铜铅锌多金属硫化矿工艺矿物学研[J]. 金属矿山, 2014(2):83-86.WANG W Z, LI X J, CHEN L P. Study on process mineralogy of a copper lead zinc polymetallic sulfide ore in Liaoning[J]. Metal Mines, 2014(2):83-86. WANG W Z, LI X J, CHEN L P. Study on process mineralogy of a copper lead zinc polymetallic sulfide ore in Liaoning[J]. Metal Mines, 2014(2):83-86. |
[9] | 孙若凡, 刘丹, 杜钰, 等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4):80-86.SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012 SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012 |
[10] | 黄晟, 吕兵超, 廖银英, 等. 某含金多金属矿尼尔森重选实验研究[J]. 矿产综合利用, 2019(2):51-56.HUANG S, LYU B C, LIAO Y Y, et al. Study on nelson gravity separation of a polymetallic ore bearing gold[J]. Multipurpose Utilization of Mineral Resources, 2019(2):51-56. doi: 10.3969/j.issn.1000-6532.2019.02.010 HUANG S, LYU B C, LIAO Y Y, et al. Study on nelson gravity separation of a polymetallic ore bearing gold[J]. Multipurpose Utilization of Mineral Resources, 2019(2):51-56. doi: 10.3969/j.issn.1000-6532.2019.02.010 |
Galena metasomatic pyrite sphalerite
Sphalerite wrapping galena
Consecutive metasomatism of galena and pyrite
Metasomatism of galena and pyrite
Pyrite wrapped sphalerite
Galena replacing sphalerite
Replacement of pyrite and sphalerite with galena
galena replacement of sphalerite and pyrite