Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 4
Article Contents

WU Xishun, WANG Denghong, CHENG Aiying, MIAO Miao, YANG Tiantian, YAO Xiang. New Progress in Exploration and Development of Global Li-Be-Nb-Ta Resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 1-10, 20. doi: 10.3969/j.issn.1000-6532.2024.04.001
Citation: WU Xishun, WANG Denghong, CHENG Aiying, MIAO Miao, YANG Tiantian, YAO Xiang. New Progress in Exploration and Development of Global Li-Be-Nb-Ta Resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 1-10, 20. doi: 10.3969/j.issn.1000-6532.2024.04.001

New Progress in Exploration and Development of Global Li-Be-Nb-Ta Resources

  • This is an article in the field of mining engineering. Li-Be-Nb-Ta are not only the important highly-demanded rare metals, but also key minerals in emerging strategic industries. They have both commonality and individuality in mineralization mechanism and R&D with new progress. This article aims to comprehensively and accurately measure and evaluate the global resource and reserve data of Li-Be-Nb-Ta, and timely reflect new developments in exploration and development and technological progress. The multi-cycle metallogenic theory of granite pegmatite has made important breakthrough in exploration, the technical output of lithium deposits in South American salt lakes is approaching, the potential for lithium extraction and storage increase in clay rocks and geothermal brines is increasing, the alkaline-peralkaline volcanic intrusive pegmatite type Nb-Ta mineralization has been highlighted in the Americas and the Qinghai-Xizang region, and the exploration of Li-Be deposits in mainland China has made important breakthroughs. The construction of the resource base for Nb-Ta-REE in northwest Hubei can learn from the progress and experience of enterprise level exploration and testing such as Avalon Rare Metals Company in North America. Based on the analysis of 1396 lithium beryllium niobium tantalum deposits and typical cases in the world, this article proposes that multi stage thermal events and multi cycle magmatic differentiation and melting may be the key conditions for large to super large deposits.

  • 加载中
  • [1] 王登红, 刘丽君, 代鸿章, 等. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向[J]. 地球科学, 2017, 42(12):2243-2257.WANG D H, LIU L J, DAI H Z, et al. Discussion on particularity and prospecting direction of large and super-large spodumene deposits[J]. Earth Sciences, 2017, 42(12):2243-2257.

    Google Scholar

    WANG D H, LIU L J, DAI H Z, et al. Discussion on particularity and prospecting direction of large and super-large spodumene deposits[J]. Earth Sciences, 2017, 42(12):2243-2257.

    Google Scholar

    [2] 徐璐, 杨耀辉, 颜世强, 等. 我国黏土型锂矿提锂研究现状及前景展望[J]. 矿产综合利用, 2023(4):12-18.XU L, YANG Y H, YAN S Q, et al. Lithium extraction from clay-type ore in China: status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002

    CrossRef Google Scholar

    XU L, YANG Y H, YAN S Q, et al. Lithium extraction from clay-type ore in China: status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002

    CrossRef Google Scholar

    [3] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6):1189-1209.WANG D H. Study on critical mineral resources: significance, of research, determination of types, attributes of resources, progress of prospecting, problems of utilization and direction of exploitation[J]. Journal of Geology, 2019, 93(6):1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    WANG D H. Study on critical mineral resources: significance, of research, determination of types, attributes of resources, progress of prospecting, problems of utilization and direction of exploitation[J]. Journal of Geology, 2019, 93(6):1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    [4] 许志琴, 朱文斌, 郑碧海, 等. 新能源锂矿战略与大陆动力学研究[J]. 地质学报, 2021, 10:5-22.XU Z Q, ZHU W B, ZHENG B H, et al. New energy strategy for lithium resources and the continental dynamics research[J]. Acta Geologica Sinica, 2021, 10:5-22.

    Google Scholar

    XU Z Q, ZHU W B, ZHENG B H, et al. New energy strategy for lithium resources and the continental dynamics research[J]. Acta Geologica Sinica, 2021, 10:5-22.

    Google Scholar

    [5] 邢凯, 朱清, 任军平, 等. 全球锂资源特征及市场发展态势分析[J]. 地质通报, 2023, 42(8):1402-1421.XING K, ZHU Q, REN J P, et al. Research on the characteristics and market development trend of global lithium resources[J]. Geological Bulletin of China, 2023, 42(8):1402-1421. doi: 10.12097/j.issn.1671-2552.2023.08.012

    CrossRef Google Scholar

    XING K, ZHU Q, REN J P, et al. Research on the characteristics and market development trend of global lithium resources[J]. Geological Bulletin of China, 2023, 42(8):1402-1421. doi: 10.12097/j.issn.1671-2552.2023.08.012

    CrossRef Google Scholar

    [6] 左更. 我国稀缺性战略金属资源保供稳供问题的思考——以钽、铌、铬、钴为例[J]. 中国国土资源经济, 2023, 36(9):4-13+23.ZUO G. Thinking on the problem of stable supply of scarce strategic metal resources in China-take tantalum, niobium, chromium and cobalt for example[J]. Natural Resource Economics of China, 2023, 36(9):4-13+23.

    Google Scholar

    ZUO G. Thinking on the problem of stable supply of scarce strategic metal resources in China-take tantalum, niobium, chromium and cobalt for example[J]. Natural Resource Economics of China, 2023, 36(9):4-13+23.

    Google Scholar

    [7] 茹阳阳, 吴可仲. “锂佩克”呼声再起 全球锂供应体系深刻变局已开启[N]. 中国经营报, 2022-12-05(B08).RU Y Y, WU K Z. The global lithium supply system has begun [N]. China Business News, 2022-12-05 (B08).

    Google Scholar

    RU Y Y, WU K Z. The global lithium supply system has begun [N]. China Business News, 2022-12-05 (B08).

    Google Scholar

    [8] 邓伟, 颜世强, 谭洪旗, 等. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 2023(1):148-154.DENG W, YAN S Q, TAN H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(1):148-154. doi: 10.3969/j.issn.1000-6532.2023.01.020

    CrossRef Google Scholar

    DENG W, YAN S Q, TAN H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(1):148-154. doi: 10.3969/j.issn.1000-6532.2023.01.020

    CrossRef Google Scholar

    [9] 李娜, 高爱红, 王小宁. 全球铍资源供需形势及建议[J]. 中国矿业, 2019, 28(4):69-73.LI N, GAO A H, WANG X N. Global Beryllium supply and demand trend and its enlightenment[J]. China Mining Industry, 2019, 28(4):69-73. doi: 10.12075/j.issn.1004-4051.2019.04.028

    CrossRef Google Scholar

    LI N, GAO A H, WANG X N. Global Beryllium supply and demand trend and its enlightenment[J]. China Mining Industry, 2019, 28(4):69-73. doi: 10.12075/j.issn.1004-4051.2019.04.028

    CrossRef Google Scholar

    [10] 邓攀, 陈玉明, 叶锦华, 等. 全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业, 2019, 28(4):63-68.DENG P, CHEN Y M, YE J H, et al. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Mining Magazine, 2019, 28(4):63-68. doi: 10.12075/j.issn.1004-4051.2019.04.029

    CrossRef Google Scholar

    DENG P, CHEN Y M, YE J H, et al. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Mining Magazine, 2019, 28(4):63-68. doi: 10.12075/j.issn.1004-4051.2019.04.029

    CrossRef Google Scholar

    [11] 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1): 1-9.WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 1-6.

    Google Scholar

    WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 1-6.

    Google Scholar

    [12] 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发的技术现状、革新及展望[J]. 矿产综合利用, 2020(6):110-120.WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    CrossRef Google Scholar

    WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    CrossRef Google Scholar

    [13] 隰弯弯, 赵宇浩, 倪培, 等. 锂矿主要类型、特征、时空分布及找矿潜力分析[J]. 沉积与特提斯地质, 2023, 43(1):19-35.XI W W, ZHAO Y H, NI P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethys Geology, 2023, 43(1):19-35. doi: 10.3969/j.issn.1009-3850.2023.01.002

    CrossRef Google Scholar

    XI W W, ZHAO Y H, NI P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethys Geology, 2023, 43(1):19-35. doi: 10.3969/j.issn.1009-3850.2023.01.002

    CrossRef Google Scholar

    [14] T R Benson, M. A Coble, John H. Dilles, Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones [J]. Science Advances. 9, eadh8183 (2023).

    Google Scholar

    [15] 刘成林, 余小灿, 袁学银, 等等. 世界盐湖卤水型锂矿特征、分布规律与成矿动力模型[J]. 地质学报, 2021, 95(7):2009-2029.LIU C L, YU X C, YUAN X Y, et al. Characteristics, distribution regularity and formation model of Brine-type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica, 2021, 95(7):2009-2029. doi: 10.3969/j.issn.0001-5717.2021.07.001

    CrossRef Google Scholar

    LIU C L, YU X C, YUAN X Y, et al. Characteristics, distribution regularity and formation model of Brine-type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica, 2021, 95(7):2009-2029. doi: 10.3969/j.issn.0001-5717.2021.07.001

    CrossRef Google Scholar

    [16] 韩佳欢, 郑绵平, 乜贞, 等. 我国深层地下卤水钾、锂资源及其开发前景[J]. 盐湖研究, 1-11.HAN J H, ZHENG M P, NIE Z, et al. Lithium and potassium resources of oilfield brine and development prospects in China [J]. Journal of Salt Lake Research, 1-11.

    Google Scholar

    HAN J H, ZHENG M P, NIE Z, et al. Lithium and potassium resources of oilfield brine and development prospects in China [J]. Journal of Salt Lake Research, 1-11.

    Google Scholar

    [17] 梁飞, 赵汀, 王登红, 等. 中国铍资源供需预测与发展战略[J]. 中国矿业, 2018, 27(11):6-10+17.LIANG F, ZHAO T, WANG D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11):6-10+17. doi: 10.12075/j.issn.1004-4051.2018.11.011

    CrossRef Google Scholar

    LIANG F, ZHAO T, WANG D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11):6-10+17. doi: 10.12075/j.issn.1004-4051.2018.11.011

    CrossRef Google Scholar

    [18] Schulz, K. J. , Piatak, N. M. , Papp, J. F. 2017, Niobium and Tantalum, chap. M of Schulz, K. J. , DeYoung, J. H. , Jr. , Seal, R. R. , II, and Bradley, D. C. , eds. , Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U. S. Geological Survey Professional Paper 1802, p. M1– M34.

    Google Scholar

    [19] Trueman D. L. , Pedersen J. C. , de St. Jorre L. , et al. 1988. The Thor Lake rare-metal deposits, Northwest Territories. In: Recent Advances in theGeology of Granite-Related Mineral Deposits, Special Volume 39 (eds R. P. Taylor and D. F. Strong), pp. 280–290. The Canadian Institute of Mining and Metallurgy.

    Google Scholar

    [20] Simandl, G. J. , 2014, Geology and market-dependent significance of rare earth element resources: Mineralium Deposita, v. 49, p. 889–904, https://doi.org/10.1007/s00126-014-0546-z.

    Google Scholar

    [21] Mackay, D. A. R. , Simandl, G. J. , 2015, Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits: Geochemistry: Exploration, Environment, Analysis, v. 15, p. 167–178, https://doi.org/10.1144/geochem2014-289.

    Google Scholar

    [22] Thomas, M. D. , Ford, K. L. , Keating, P. , Review paper: Exploration geophysics for intrusion-hosted rare metals, European Association of Geoscientists & Engineers, Geophysical Prospecting, 2016, 64, 1275–1304.

    Google Scholar

    [23] Bastos, Neto A. C. , Pereira, V. P. , Ronchi, L. H. , et al. The world class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas state, Brazil, Can. Mineral. , 2009, vol. 47, pp. 1329–1357.

    Google Scholar

    [24] A. V. Tkacheva, D. V. Rundqvista, N. A. Vishnevskayaa. Global Metallogeny of Tantalum Through Geological Time, 2019. GEOLOGY OF ORE DEPOSITS Vol. 61 No. 6.

    Google Scholar

    [25] Dittrich Thomas, Thomas Seifert, Bernhard Schulz, et al. 2019. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia. Geology and Metallogeny of Pollucite Mineralisations. Springer, 1-94.

    Google Scholar

    [26] Richards, J. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nature Geosci 6, 911-916 (2013). https://doi.org/10.1038/ngeo1920.

    Google Scholar

    [27] Frank Melcher, Torsten Graupner, Hans-Eike Gäbler, et al. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology, Ore Geology Reviews, Volume 64, 2015, Pages 667-719.

    Google Scholar

    [28] Černý, P. , London, D. , Novák, M. , 2012. Granitic pegmatites as reflections of their sources. Elements 8, 289–294.

    Google Scholar

    [29] Fetherston, J. M. , 2004. Tantalum in Western Australia. Mineral Res. Bull. , 22. Geological Survey of Western Australia (153 S. ).

    Google Scholar

    [30] Bradley, Dwight, and McCauley, Andrew, 2013, A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites: US Geological Survey Open-File Report 2013-1008, 7p. [Also available at http://pubs.usgs.gov/of/2013/1008/.]

    Google Scholar

    [31] Bradley DC, McCauley A, Stillings LM (2017) Mineral-deposit model for Lithium–Cesium–Tantalum pegmatites. USGS Scientific Investigations Report 2010-5070-O, 48 pp.

    Google Scholar

    [32] 郭春丽, 张斌武, 郑义, 等. 中国花岗岩型锂矿床: 重要特征、成矿条件及形成机制[J]. 岩石学报, 2024, 40(2):347-403.GUO C L, ZHANG B W, ZHENG Y, et al. Granite-type lithium deposits in China: Important characristics, metallogenic conditions, and genetic mechanism[J]. Acta Petrologica Sinica, 2024, 40(2):347-403. doi: 10.18654/1000-0569/2024.02.02

    CrossRef Google Scholar

    GUO C L, ZHANG B W, ZHENG Y, et al. Granite-type lithium deposits in China: Important characristics, metallogenic conditions, and genetic mechanism[J]. Acta Petrologica Sinica, 2024, 40(2):347-403. doi: 10.18654/1000-0569/2024.02.02

    CrossRef Google Scholar

    [33] S B Castor, C D. Henry, Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: Geologic, mineralogical, and geochemical characteristics and possible origin[J]. Minerals 10, 68 (2020).

    Google Scholar

    [34] 刘舒飞, 陈德稳, 李会谦. 中国锂资源产业现状及对策建议[J]. 资源与产业, 2016, 18(2):12-15.LIU S F, CHEN D W, LI H Q. Situation and suggestions of China’s lithium resources and industry[J]. Resources & Industry, 2016, 18(2):12-15.

    Google Scholar

    LIU S F, CHEN D W, LI H Q. Situation and suggestions of China’s lithium resources and industry[J]. Resources & Industry, 2016, 18(2):12-15.

    Google Scholar

    [35] 郑绵平, 刘喜方, 赵文. 西藏高原盐湖的构造地球化学和生物学研究[J]. 地质学报, 2007(12):1698-1708.ZHENG M P, LIU X F, ZHAO W. Tectonogeochemical and biological aspects of salt lakes on the Tibetan Plateau[J]. Acta Geologica Sinica, 2007(12):1698-1708. doi: 10.3321/j.issn:0001-5717.2007.12.010

    CrossRef Google Scholar

    ZHENG M P, LIU X F, ZHAO W. Tectonogeochemical and biological aspects of salt lakes on the Tibetan Plateau[J]. Acta Geologica Sinica, 2007(12):1698-1708. doi: 10.3321/j.issn:0001-5717.2007.12.010

    CrossRef Google Scholar

    [36] Woolley A R, Bailey D K. The crucial role of lithospheric structure in the generation and release of carbonatites—geological evidence[M]. Mineralogical Magazine, 2012, 259–270. [http://dx. doi.org/10.1180/minmag.2012.076.2.02.]

    Google Scholar

    [37] 王登红, 吴西顺. 21世纪的能源金属-锂的奥秘[J]. 国土资源科普与文化, 2017(4):22-27.WANG D H, WU X S. The mystery of the energy metal - lithium in the 21st century[J]. Scientific and Cultural Popularization of Land and Resources, 2017(4):22-27.

    Google Scholar

    WANG D H, WU X S. The mystery of the energy metal - lithium in the 21st century[J]. Scientific and Cultural Popularization of Land and Resources, 2017(4):22-27.

    Google Scholar

    [38] 刘雪, 王春连, 刘学龙, 等. 中国锂矿床主要类型特征、分布情况及开发利用现状[J/OL]. 中国地质, 1-29[2024-02-01].LIU X, WANG C L, LIU X L, et al. Characteristics of main types of lithium deposits in China, their distribution and current status of development and utilisation [J/OL]. Geology in China, 1-29[2024-02-01].

    Google Scholar

    LIU X, WANG C L, LIU X L, et al. Characteristics of main types of lithium deposits in China, their distribution and current status of development and utilisation [J/OL]. Geology in China, 1-29[2024-02-01].

    Google Scholar

    [39] Sanjuan B, Gourcerol B, Millot R, et al. Lithium-richgeothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources[J]. Geothermics, 101: 102385.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(1309) PDF downloads(810) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint