Citation: | LI Zhen, ZHONG Lixiang, CUI Chengyang, LI Zhiwei. Determination of Niobium, Tantalum, Lithium and Beryllium in Niobium Tantalum Ore by Alkali Fusion Inductively Coupled Plasma Mass Spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 200-205. doi: 10.3969/j.issn.1000-6532.2024.03.031 |
This is an article in the field of mineral analysis and testing. A rapid method for the simultaneous determination of Nb, Ta, Li and Be in Nb Ta ore by alkali fusion inductively coupled plasma mass spectrometry was established. The mixed alkali of sodium peroxide and sodium hydroxide=1:1 is used to decompose the sample. During extraction, niobium, tantalum and other elements are completely precipitated and separated from the liquid. The content of niobium, tantalum, lithium and beryllium in the sample is determined by inductively coupled plasma mass spectrometer after conversion and precipitation with 25 mL of 10% sulfuric acid+10% hydrogen peroxide solution. This method is used to determine the national first-class reference materials GBW 07153, GBW 07155 and GBW 07185. The measured values of each element are basically consistent with the certified values, with a relative error of 0.50%~4.77% and a relative standard deviation (n=6) of -0.009%~0.008%. It is applicable to the determination of niobium and tantalum in niobium tantalum concentrates, refractory or complex samples, and has been applied in production practice.
[1] | 李志伟, 赵晓亮, 李珍, 等. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J]. 岩矿测试, 2017, 36(6):594-600.LI Z W, ZHAO X L, LI Z, et al. Determination of niobium, tantalum and associated elements in rare polymetallic ore dressing samples by open acid fusion-inductively coupled plasma atomic emission spectrometry[J]. Rock And Mineral Analysis, 2017, 36(6):594-600. LI Z W, ZHAO X L, LI Z, et al. Determination of niobium, tantalum and associated elements in rare polymetallic ore dressing samples by open acid fusion-inductively coupled plasma atomic emission spectrometry[J]. Rock And Mineral Analysis, 2017, 36(6):594-600. |
[2] | 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1):1-9.WU X S, WANG D H, HUANG W B, et al. Global lithium ore and associated beryllium niobium tantalum mining technology development trend[J]. Multipurpose Utilization of Mineral Resources, 2020(1):1-9. WU X S, WANG D H, HUANG W B, et al. Global lithium ore and associated beryllium niobium tantalum mining technology development trend[J]. Multipurpose Utilization of Mineral Resources, 2020(1):1-9. |
[3] | 姚玉玲, 赵朝辉, 刘淑君. 树脂交换分离—电感耦合等离子质谱法测定锡矿石的铌钽[J]. 矿产综合利用, 2021(5):146-151.YAO Y L, ZHAO C H, LIU S J. Resin exchange separation-inductively coupled plasma mass spectrometry determination of niobium and tantalum in tin ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5):146-151. YAO Y L, ZHAO C H, LIU S J. Resin exchange separation-inductively coupled plasma mass spectrometry determination of niobium and tantalum in tin ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5):146-151. |
[4] | 郭晓瑞, 王甜甜, 张宏丽, 等. 电感耦合等离子体质谱法测定地球化学样品中铌钽钨锡[J]. 冶金分析, 2021, 41(3):44-50.GUO X R, WANG T T, ZHANG H L, et al. Determination of Nb, Ta, W, Sn in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(3):44-50. GUO X R, WANG T T, ZHANG H L, et al. Determination of Nb, Ta, W, Sn in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(3):44-50. |
[5] | 高会艳. ICP-MS和 ICP-AES承担地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J]. 岩矿测试, 2014, 33(3):312-320.GAO H Y. ICP-MS and ICP-AES undertake geochemical exploration samples and the establishment of niobium tantalum method system in rare earth ore[J]. Rock And Mineral Analysis, 2014, 33(3):312-320. GAO H Y. ICP-MS and ICP-AES undertake geochemical exploration samples and the establishment of niobium tantalum method system in rare earth ore[J]. Rock And Mineral Analysis, 2014, 33(3):312-320. |
[6] | 郑平英. 等离子体原子发射光谱法测定矿石样品中铌钽的应用[J]. 科技资讯, 2014, 12(25):73, 76.ZHENG P Y. Application of ICP-AES in determination of niobium and tantalum in ore samples[J]. Technical Information, 2014, 12(25):73, 76. ZHENG P Y. Application of ICP-AES in determination of niobium and tantalum in ore samples[J]. Technical Information, 2014, 12(25):73, 76. |
[7] | 李可及, 赵朝辉. 低稀释比熔融-X射线荧光光谱法分析铌钽矿石[J]. 理化检验(化学分册), 2018, 54(12):1410-1414.LI K J, ZHAO C H. Analysis of niobium-tantalum ore by low dilution melting-X-ray fluorescence spectrometry[J]. Physical Testing And Chemical Analysis, 2018, 54(12):1410-1414. LI K J, ZHAO C H. Analysis of niobium-tantalum ore by low dilution melting-X-ray fluorescence spectrometry[J]. Physical Testing And Chemical Analysis, 2018, 54(12):1410-1414. |
[8] | 邵常丽. X射线荧光光谱法测定铌铁中铌钽铜钛铝磷[J]. 冶金分析, 2017, 37(6):50-54.SHAO C L. Determination of niobium, tantalum, copper, titanium, aluminum and phosphorus in ferroniobium by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2017, 37(6):50-54. SHAO C L. Determination of niobium, tantalum, copper, titanium, aluminum and phosphorus in ferroniobium by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2017, 37(6):50-54. |
[9] | 许宁辉, 唐武, 于红艳. X荧光光谱法测定铌钨合金中钨、钼、锆元素[J]. 当代化工, 2020, 49(1):200-203.XU N H, TANG W, YU H Y. Determination of tungsten, molybdenum and zirconium in niobium tungsten alloy by X fluorescence spectrometry[J]. Contemporary Chemical Industry, 2020, 49(1):200-203. XU N H, TANG W, YU H Y. Determination of tungsten, molybdenum and zirconium in niobium tungsten alloy by X fluorescence spectrometry[J]. Contemporary Chemical Industry, 2020, 49(1):200-203. |
[10] | 程文翠, 付永立, 马会春, 等. 纸上层析分离-ICP-AES测定稀有金属矿中的铌钽[J]. 分析实验室, 2018, 37(2):168-173.CHENG W C, FU Y L, MA H C, et al. Determination of niobium and tantalum in rare metal ores by paper chromatography separation-ICP-AES[J]. Analytical Laboratory, 2018, 37(2):168-173. CHENG W C, FU Y L, MA H C, et al. Determination of niobium and tantalum in rare metal ores by paper chromatography separation-ICP-AES[J]. Analytical Laboratory, 2018, 37(2):168-173. |
Comparison of mixed alkali flux dosage selection
Comparison of internal standard element selection