Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 3
Article Contents

CAI Mingming, LI Guangsheng, ZHU Xingfu, XU Chao, SUN Qiwei, WANG Nan. Automatic Process Mineralogy Based on Gold Ore Core[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 174-178. doi: 10.3969/j.issn.1000-6532.2024.03.027
Citation: CAI Mingming, LI Guangsheng, ZHU Xingfu, XU Chao, SUN Qiwei, WANG Nan. Automatic Process Mineralogy Based on Gold Ore Core[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 174-178. doi: 10.3969/j.issn.1000-6532.2024.03.027

Automatic Process Mineralogy Based on Gold Ore Core

  • This is an article in the field of process mineralogy. A quartz vein type gold deposit in Shandong has a gold grade of 2.51 g/t. In order to further develop the deposit and study the beneficiation process, the process mineralogy of the mineral was carried out. The technical methods involved in this study include multi-element chemical analysis, chemical phase analysis, optical microscope identification, X-ray diffraction (XRD) analysis, automatic quantitative mineral analysis (BPMA), scanning electron microscope energy spectrometer (SEM-EDS) analysis, etc. The results show that: (1) most of the gold minerals in the ore are silver-gold, and a small amounts of gold, silver and natural gold are occasionally found; (2) The embedding relationship between gold minerals and sulfides such as pyrite in the ore is very close. Pyrite is the main carrier mineral of gold minerals, and the proportion of single and exposed gold in the ore is high, which is 58.96%. The proportion of gold encapsulated in sulfides such as pyrite is 39.84%, and the proportion of gold encapsulated in gangue minerals is 1.20%; (3) The particle size distribution of gold minerals in the ore is uneven, and the overall particle size is relatively fine. Gold particles with a particle size larger than 0.020 mm can be seen in the ore, with an occupancy rate of 22.08%. Gold minerals with a particle size less than 0.020 mm have an occupancy rate of 77.92%, with an occupancy rate of 24.83% for micro gold minerals with a particle size less than 0.005 mm and 0.35% for sub micron sized gold minerals with a particle size less than 0.001 mm.

  • 加载中
  • [1] 梁晓, 胡瑞彪, 冯泽平. 广东某复杂难选难浸金矿工艺矿物学[J]. 矿产综合利用, 2019(6):65-68.LIANG X, HU R B, FENG Z P. Study on the technological mineralogy of a complex refractory gold ore in Guangdong[J]. Multipurpose Utilization of Mineral Resources, 2019(6):65-68. doi: 10.3969/j.issn.1000-6532.2019.06.014

    CrossRef Google Scholar

    LIANG X, HU R B, FENG Z P. Study on the technological mineralogy of a complex refractory gold ore in Guangdong[J]. Multipurpose Utilization of Mineral Resources, 2019(6):65-68. doi: 10.3969/j.issn.1000-6532.2019.06.014

    CrossRef Google Scholar

    [2] 周利华, 陈晓芳, 苏妤芸. 山西某斑岩型金矿工艺矿物学特性[J]. 矿产综合利用, 2020(3):143-147.ZHOU L H, CHEN X F, SU Y Y. Technological and mineralogical characteristics of a porphyry gold deposit in Shanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2020(3):143-147. doi: 10.3969/j.issn.1000-6532.2020.03.024

    CrossRef Google Scholar

    ZHOU L H, CHEN X F, SU Y Y. Technological and mineralogical characteristics of a porphyry gold deposit in Shanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2020(3):143-147. doi: 10.3969/j.issn.1000-6532.2020.03.024

    CrossRef Google Scholar

    [3] 刘坤, 王婷霞, 李健民, 等. 天水某金矿工艺矿物学及选矿试验研究[J]. 矿产综合利用, 2020(5):101-104.LIU K, WANG T X, LI J M, et al. Process mineralogy and mineral processing of a gold mine in Tianshui[J]. Multipurpose Utilization of Mineral Resources, 2020(5):101-104. doi: 10.3969/j.issn.1000-6532.2020.05.014

    CrossRef Google Scholar

    LIU K, WANG T X, LI J M, et al. Process mineralogy and mineral processing of a gold mine in Tianshui[J]. Multipurpose Utilization of Mineral Resources, 2020(5):101-104. doi: 10.3969/j.issn.1000-6532.2020.05.014

    CrossRef Google Scholar

    [4] 王越, 王婧, 李潇雨, 等. 川西某金矿工艺矿物学研究及对选矿工艺的影响[J]. 矿产综合利用, 2021(4):206-210.WANG Y, WANG J, LI X Y, et al. Process mineralogy study of the gold deposit in western Sichuan area and its influence on mineral Processing technology[J]. Multipurpose Utilization of Mineral Resources, 2021(4):206-210. doi: 10.3969/j.issn.1000-6532.2021.04.034

    CrossRef Google Scholar

    WANG Y, WANG J, LI X Y, et al. Process mineralogy study of the gold deposit in western Sichuan area and its influence on mineral Processing technology[J]. Multipurpose Utilization of Mineral Resources, 2021(4):206-210. doi: 10.3969/j.issn.1000-6532.2021.04.034

    CrossRef Google Scholar

    [5] 刘璐, 王守敬, 卞孝东. 灵宝某金矿石工艺矿物学研究[J]. 金属矿山, 2017(11):112-115.LIU L, WANG S J, BIAN X D. Process mineralogy of a gold ore from Lingbao[J]. Metal Mining, 2017(11):112-115. doi: 10.3969/j.issn.1001-1250.2017.11.023

    CrossRef Google Scholar

    LIU L, WANG S J, BIAN X D. Process mineralogy of a gold ore from Lingbao[J]. Metal Mining, 2017(11):112-115. doi: 10.3969/j.issn.1001-1250.2017.11.023

    CrossRef Google Scholar

    [6] 王川. 工艺矿物学在新疆某铜矿浮选尾矿降尾工艺试验中的应用研究[J]. 有色金属(选矿部分), 2021(4):13-17.WANG C. Application of process mineralogy in the tailing reduction process test of flotation tailings of a copper mine in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2021(4):13-17.

    Google Scholar

    WANG C. Application of process mineralogy in the tailing reduction process test of flotation tailings of a copper mine in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2021(4):13-17.

    Google Scholar

    [7] 吴师金, 刘庭忠. 新疆某白钨矿物质组分特征及赋存状态研究[J]. 有色金属(选矿部分), 2020(6):8-13+18.WU S J, LIU T Z. Characterization of the material components and the state of the scheelite ore in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2020(6):8-13+18.

    Google Scholar

    WU S J, LIU T Z. Characterization of the material components and the state of the scheelite ore in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2020(6):8-13+18.

    Google Scholar

    [8] 孙传尧. 选矿工程师手册: 第1册[M]. 北京: 冶金工业出版社, 2015.SUN C Y. Handbook for mineral processing engineers: book 1[M]. Beijing: Metallurgical Industry Press, 2015.

    Google Scholar

    SUN C Y. Handbook for mineral processing engineers: book 1[M]. Beijing: Metallurgical Industry Press, 2015.

    Google Scholar

    [9] 肖仪武. 某铜锡多金属矿尾矿工艺矿物学研究[J]. 有色金属(选矿部分), 2020(1):1-5.XIAO Y W. Research on process mineralogy of tailings of a copper-tin polymetallic mine[J]. Nonferrous Metals (Mineral Processing Section), 2020(1):1-5.

    Google Scholar

    XIAO Y W. Research on process mineralogy of tailings of a copper-tin polymetallic mine[J]. Nonferrous Metals (Mineral Processing Section), 2020(1):1-5.

    Google Scholar

    [10] 叶小璐. 工艺矿物学在选厂流程优化中的作用[J]. 有色金属(选矿部分), 2020(4):13-16+33.YE X L. The role of process mineralogy in the optimization of beneficiation plant flow[J]. Nonferrous Metals (Mineral Processing Section), 2020(4):13-16+33.

    Google Scholar

    YE X L. The role of process mineralogy in the optimization of beneficiation plant flow[J]. Nonferrous Metals (Mineral Processing Section), 2020(4):13-16+33.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(6)

Article Metrics

Article views(911) PDF downloads(129) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint