Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 3
Article Contents

ZHANG Jing, TANG Xin, LYU Xiangwen, JIAN Sheng, QIAO Jibo, ZHANG Lin. Comprehensive Recovery Process of Skarn Type Copper-sulfur Ore Resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 150-156. doi: 10.3969/j.issn.1000-6532.2024.03.023
Citation: ZHANG Jing, TANG Xin, LYU Xiangwen, JIAN Sheng, QIAO Jibo, ZHANG Lin. Comprehensive Recovery Process of Skarn Type Copper-sulfur Ore Resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 150-156. doi: 10.3969/j.issn.1000-6532.2024.03.023

Comprehensive Recovery Process of Skarn Type Copper-sulfur Ore Resources

More Information
  • Corresponding author: JIAN Sheng  
  • This is an article in the field of mineral processing engineering. For a skarn copper ore, the disseminated particle size is fine, the valuable elements in the ore are Cu, S, Fe and the associated element Ag. Compared with the effects of copper preferential flotation and copper-sulfur mixed flotation-copper-sulfur separation on the comprehensive recovery, the copper-sulfur mixed flotation-copper-sulfur separation process can achieve better recovery of copper, sulfur and silver, and magnetite has a certain recovery value. Copper concentrate with copper grade of 24.39% and copper recovery of 91.68% and sulfur concentrate with sulfur grade of 33.10% and sulfur recovery of 61.19% were obtained by copper sulfur mixed flotation. Ag was enriched in the copper concentrate, with a grade of 185 g/t and Ag recovery of 83.21%. The recovery of iron concentrate can be increased after the regrinding magnetic separation of flotation tailings. With two-stage weak magnetic separation, iron concentrate with iron grade of 56.48% and iron recovery of 33.84% can be obtained. The results can provide a reference for the similar copper sulfide.

  • 加载中
  • [1] 计启迪, 刘卫东, 陈伟, 等. 基于产业链的全球铜贸易网络结构研究[J]. 地理科学, 2021, 41(1):44-54.JI Q D, LIU W D, CHEN W, et al. Research on the structure of global copper trade network based on industrial chain[J]. Geoscience, 2021, 41(1):44-54.

    Google Scholar

    JI Q D, LIU W D, CHEN W, et al. Research on the structure of global copper trade network based on industrial chain[J]. Geoscience, 2021, 41(1):44-54.

    Google Scholar

    [2] 段绍甫. 我国有色金属矿产资源地位与全球矿业开发格局变化趋势[J]. 中国有色金属, 2021(8):58-61.DUAN S F. China's nonferrous metal mineral resources status and global mining development pattern change trend[J]. China Nonferrous Metals, 2021(8):58-61.

    Google Scholar

    DUAN S F. China's nonferrous metal mineral resources status and global mining development pattern change trend[J]. China Nonferrous Metals, 2021(8):58-61.

    Google Scholar

    [3] 任彦瑛. 中国铜矿资源的现状及潜力分析[J]. 中国金属通报, 2021(1):5-6.REN Y Y. Current situation and potential analysis of copper resources in China[J]. China Metal Bulletin, 2021(1):5-6. doi: 10.3969/j.issn.1672-1667.2021.01.003

    CrossRef Google Scholar

    REN Y Y. Current situation and potential analysis of copper resources in China[J]. China Metal Bulletin, 2021(1):5-6. doi: 10.3969/j.issn.1672-1667.2021.01.003

    CrossRef Google Scholar

    [4] 逄军武, 张玲, 达娃卓玛, 等. 某选矿厂处理角岩型铜硫矿选铜浮选实验[J]. 矿产综合利用, 2021(4):139-143.PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.

    Google Scholar

    PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.

    Google Scholar

    [5] 周涛, 黄国贤, 李飞, 等. 西藏某细粒嵌布难选硫化铜矿选矿实验研究[J]. 矿产综合利用, 2022 (2): 45-50.ZHOU T , HUANG G X, LI F, et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 45-50.

    Google Scholar

    ZHOU T , HUANG G X, LI F, et al. Experimental research on mineral processing for a refractory fine disseminated copper sulfide ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 45-50.

    Google Scholar

    [6] 陈建华, 冯其明. 铜硫浮选分离技术进展[J]. 矿产保护与利用, 1997(4):17-21.CHEN J H, FENG Q M. Advances in copper-sulfur flotation separation technology[J]. Mineral Protection and Utilization, 1997(4):17-21.

    Google Scholar

    CHEN J H, FENG Q M. Advances in copper-sulfur flotation separation technology[J]. Mineral Protection and Utilization, 1997(4):17-21.

    Google Scholar

    [7] 王丰雨, 徐晓衣, 谢宝华, 等. 马来西亚某高硫铜矿磁选-浮选工艺实验研究[J]. 矿冶工程, 2020, 40(5):61-64.WANG F Y, XU X Y, XIE B H, et al. Experimental study on magnetic separation-flotation process of a high sulfur copper ore in Malaysia[J]. Mining and Metallurgical Engineering, 2020, 40(5):61-64.

    Google Scholar

    WANG F Y, XU X Y, XIE B H, et al. Experimental study on magnetic separation-flotation process of a high sulfur copper ore in Malaysia[J]. Mining and Metallurgical Engineering, 2020, 40(5):61-64.

    Google Scholar

    [8] 王刚, 于云龙, 马波, 等. 内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究[J]. 矿产综合利用, 2022(3):172-180.WANG G, YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180.

    Google Scholar

    WANG G, YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180.

    Google Scholar

    [9] 万丽, 周少珍, 曾克文, 等. 安徽某铜硫矿选矿工艺优化实验研究[J]. 矿产综合利用, 2019(6):41-44.WAN L, ZHOU S Z, ZENG K W, et al. Experimental study on the optimization of beneficiation process of a copper-sulfur mine in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(6):41-44.

    Google Scholar

    WAN L, ZHOU S Z, ZENG K W, et al. Experimental study on the optimization of beneficiation process of a copper-sulfur mine in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(6):41-44.

    Google Scholar

    [10] 祁忠旭. 高硫难选铜矿石的浮选研究[D]. 长沙: 中南大学, 2010.QI Z X. Flotation study of high sulfur refractory copper ores[D]. Changsha: Central South University, 2010.

    Google Scholar

    QI Z X. Flotation study of high sulfur refractory copper ores[D]. Changsha: Central South University, 2010.

    Google Scholar

    [11] 纪慧超. 高硫铜矿高效分选技术研究[D]. 昆明: 昆明理工大学, 2020.JI H C. Research on efficient separation technology of high sulfur copper ore[D]. Kunming: Kunming University of Science and Technology, 2020.

    Google Scholar

    JI H C. Research on efficient separation technology of high sulfur copper ore[D]. Kunming: Kunming University of Science and Technology, 2020.

    Google Scholar

    [12] 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987.HU X G. Beneficiation of nonferrous metal sulfide ores [M]. Beijing: Metallurgical Industry Press, 1987.

    Google Scholar

    HU X G. Beneficiation of nonferrous metal sulfide ores [M]. Beijing: Metallurgical Industry Press, 1987.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(8)

Article Metrics

Article views(683) PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint