Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 2
Article Contents

DONG Yanjia, LUO Dejiang, HE Zhiqi, LI Junbo. Energy Efficiency Evaluation of Provincial Mining Industry under Carbon Emission Constraint: Based on SBM-Malmquist Index Model[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 207-213. doi: 10.3969/j.issn.1000-6532.2024.02.033
Citation: DONG Yanjia, LUO Dejiang, HE Zhiqi, LI Junbo. Energy Efficiency Evaluation of Provincial Mining Industry under Carbon Emission Constraint: Based on SBM-Malmquist Index Model[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 207-213. doi: 10.3969/j.issn.1000-6532.2024.02.033

Energy Efficiency Evaluation of Provincial Mining Industry under Carbon Emission Constraint: Based on SBM-Malmquist Index Model

  • This is an article in the field of mining engineering. Improving energy efficiency and reducing carbon emissions in the mining industry is an important way for the mining industry to achieve green development. This essay uses the SBM model and Malmquist index to explore the mining energy efficiency of China's mining industry under the carbon emission level constraint, based on provincial (inter-provincial) mining industry panel data. The results show that the overall level of energy efficiency of China's mining industry under the carbon emission level constraint is low, and there are differences in energy efficiency among regions. The overall fluctuation of total factor productivity of China's mining industry energy from 2013 to 2018 is not significant, and China's total factor productivity increased year by year from 2015 to 2018, with technological progress being the main driver of efficiency improvement. Therefore, the level of mining technology should be improved, mining environment monitoring should be increased, and mining energy-related policies should be designated according to local conditions.

  • 加载中
  • [1] 何振嘉, 罗林涛, 杜宜春, 等. 碳中和背景下矿区生态修复减排增汇实现对策[J]. 矿产综合利用, 2022(2):9-14.HE Z J, LUO L T, DU Y C, et al. Countermeasures to realize ecological restoration and emission reduction and increase of sinks in mining areas under the background of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):9-14.

    Google Scholar

    HE Z J, LUO L T, DU Y C, et al. Countermeasures to realize ecological restoration and emission reduction and increase of sinks in mining areas under the background of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):9-14.

    Google Scholar

    [2] 王向前, 夏咏秋, 李慧宗, 等. 中国矿业能源生态效率差异及动态演进[J]. 技术经济, 2020, 39(9):110-118.WANG X Q, XIA Y Q, LI H Z, et al. Differences and dynamic evolution of energy eco-efficiency in China's mining industry[J]. Journal of Technology Economics, 2020, 39(9):110-118.

    Google Scholar

    WANG X Q, XIA Y Q, LI H Z, et al. Differences and dynamic evolution of energy eco-efficiency in China's mining industry[J]. Journal of Technology Economics, 2020, 39(9):110-118.

    Google Scholar

    [3] 鞠建华, 强海洋. 中国矿业绿色发展的趋势和方向[J]. 中国矿业, 2017, 26(2):7-12.JU J H, QIANG H Y. The trend and direction of green development of the mining industry in China[J]. China Mining Magazine, 2017, 26(2):7-12.

    Google Scholar

    JU J H, QIANG H Y. The trend and direction of green development of the mining industry in China[J]. China Mining Magazine, 2017, 26(2):7-12.

    Google Scholar

    [4] 迟远英, 张宇. 省际能源效率评价及其影响因素分析-基于Malmquist指数的实证研究[J]. 价格理论与实践, 2016(8):113-116.CHI Y Y, ZHANG Y. Provincial energy efficiency evaluation and its influencing factors: An empirical study based on Malmquist index[J]. Price:Theory & Practice, 2016(8):113-116.

    Google Scholar

    CHI Y Y, ZHANG Y. Provincial energy efficiency evaluation and its influencing factors: An empirical study based on Malmquist index[J]. Price:Theory & Practice, 2016(8):113-116.

    Google Scholar

    [5] 王群勇, 李海燕. 基于不确定环境DEA模型下中国各区域能源效率和二氧化碳排放效率评价[J]. 软科学, 2022, 36(8):78-83.WANG Q Y, LI H Y. Measuring regional efficiency of energy and carbon dioxide emission in China based on uncertain environmental DEA model[J]. Soft Science, 2022, 36(8):78-83.

    Google Scholar

    WANG Q Y, LI H Y. Measuring regional efficiency of energy and carbon dioxide emission in China based on uncertain environmental DEA model[J]. Soft Science, 2022, 36(8):78-83.

    Google Scholar

    [6] 吴家红, 段永瑞. 基于超效率SBM模型的中国区域全要素能源效率评价[J]. 上海管理科学, 2020, 42(1):12-18.WU J H, DUAN Y R. China’s regional total factor energy efficiency evaluation based on super efficiency SBM model[J]. Shanghai Management Science, 2020, 42(1):12-18.

    Google Scholar

    WU J H, DUAN Y R. China’s regional total factor energy efficiency evaluation based on super efficiency SBM model[J]. Shanghai Management Science, 2020, 42(1):12-18.

    Google Scholar

    [7] 于洪丽. 长江经济带省域绿色能源效率水平的测度[J]. 统计与决策, 2017(8):59-62.YU H L. Measurement of provincial green energy efficiency levels in the Yangtze River Economic Belt[J]. Statistics & Decision, 2017(8):59-62.

    Google Scholar

    YU H L. Measurement of provincial green energy efficiency levels in the Yangtze River Economic Belt[J]. Statistics & Decision, 2017(8):59-62.

    Google Scholar

    [8] 黄光球, 白龙博. 陕西省工业能源效率及其影响因素研究—基于三阶段超效率DEA模型[J]. 生态经济, 2019, 35(4):58-64.HUANG G Q, BAI L B. Study on industrial energy efficiency and influencing factors in Shaanxi Province: based on three-stage super-efficiency DEA model[J]. Ecological Economy, 2019, 35(4):58-64.

    Google Scholar

    HUANG G Q, BAI L B. Study on industrial energy efficiency and influencing factors in Shaanxi Province: based on three-stage super-efficiency DEA model[J]. Ecological Economy, 2019, 35(4):58-64.

    Google Scholar

    [9] 王莉. 基于SSBM-DEA模型的工业能源效率测算及分析[J]. 经济体制改革, 2019(2):128-133.WANG L. Calculation and analysis of industrial energy efficiency based on SSBM-DEA model[J]. Reform of Economic System, 2019(2):128-133.

    Google Scholar

    WANG L. Calculation and analysis of industrial energy efficiency based on SSBM-DEA model[J]. Reform of Economic System, 2019(2):128-133.

    Google Scholar

    [10] 贺勇, 马爱文. 基于DEA和ANN的我国各地区工业能源效率及其影响因素分析[J]. 数学的实践与认识, 2016, 46(9):87-96.HE Y, MA A W. Analysis on industrial energy efficiency and its influencing factors of China’s provincial regions based on DEA and ANN[J]. Mathematics in Practice and Theory, 2016, 46(9):87-96.

    Google Scholar

    HE Y, MA A W. Analysis on industrial energy efficiency and its influencing factors of China’s provincial regions based on DEA and ANN[J]. Mathematics in Practice and Theory, 2016, 46(9):87-96.

    Google Scholar

    [11] 商传磊, 张悟移, 陈俊营. 基于DEA和Malmquist指数的中国物流业全要素能源效率评价[J]. 生态经济, 2019, 35(3):51-56.SHANG C L, ZHANG W Y, CHEN J Y. Evaluation of total factor energy efficiency of China’s logistics industry based on DEA and Malmquist index[J]. Ecological Economy, 2019, 35(3):51-56.

    Google Scholar

    SHANG C L, ZHANG W Y, CHEN J Y. Evaluation of total factor energy efficiency of China’s logistics industry based on DEA and Malmquist index[J]. Ecological Economy, 2019, 35(3):51-56.

    Google Scholar

    [12] 张爱美, 郭静思, 吴卫红, 等. 物流业全要素能源效率变动及省域差异分析[J]. 资源开发与市场, 2018, 34(5):611-616.ZHANG A M, GUO J S, WU W H, et al. Analysis on changes and provincial differences of total factor energy efficiency of logistics industry[J]. Resource Development & Market, 2018, 34(5):611-616.

    Google Scholar

    ZHANG A M, GUO J S, WU W H, et al. Analysis on changes and provincial differences of total factor energy efficiency of logistics industry[J]. Resource Development & Market, 2018, 34(5):611-616.

    Google Scholar

    [13] 张瑞, 胡彦勇, 郄晓彤. 中国物流业能源生态效率与其影响因素的动态响应研究[J]. 经济问题, 2021(8):9-17.ZHANG R, HU Y Y, QIE X T. Research on dynamic response of energy eco-efficiency of China’s logistics industry to influencing factors[J]. On Economic Problems, 2021(8):9-17.

    Google Scholar

    ZHANG R, HU Y Y, QIE X T. Research on dynamic response of energy eco-efficiency of China’s logistics industry to influencing factors[J]. On Economic Problems, 2021(8):9-17.

    Google Scholar

    [14] ZHU X H, CHEN Y, FENG C. Green total factor productivity of China’s mining and quarrying industry: A global data envelopment analysis[J]. Resources Policy, 2018(57): 1-9.

    Google Scholar

    [15] TONE K, SAHOO B K. Degree of scale economies and congestion: A unified DEA approach[J]. European Journal of Operational Research, 2004, 158(3):755-772. doi: 10.1016/S0377-2217(03)00370-9

    CrossRef Google Scholar

    [16] Malmquist S. Index numbers and indifference surfaces[J]. Trabajos De Estadistica, 1953, 4(2):209-242. doi: 10.1007/BF03006863

    CrossRef Google Scholar

    [17] Fare R, Grosskopf S, Lindgren B, et al. Productivity changes in Swedish pharamacies 1980-1989: Anon-parametric Malmquist approach[J]. Journal of Productivity Analysis, 1992, 3(1/2):85-101.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(942) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint