Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 2
Article Contents

ZHANG Xiaobin, WEN Xin, CAO Weiwei, LI Zhongshan, TAN Jing. Influence of Ultrasonic Treatment on the Sedimentation Performance of Slime[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 138-143. doi: 10.3969/j.issn.1000-6532.2024.02.023
Citation: ZHANG Xiaobin, WEN Xin, CAO Weiwei, LI Zhongshan, TAN Jing. Influence of Ultrasonic Treatment on the Sedimentation Performance of Slime[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 138-143. doi: 10.3969/j.issn.1000-6532.2024.02.023

Influence of Ultrasonic Treatment on the Sedimentation Performance of Slime

More Information
  • This is an article in the field of mining engineering. Kaolinite and montmorillonite are the main clay minerals in coal slime, and clay minerals are the main factors affecting the sedimentation of coal slime. This paper takes clean coal, kaolinite and montmorillonite as the research objects. The influence of ultrasonic intensity, action time, and ultrasonic pulse interval on its sedimentation effect and floc diameter was investigated. The test results show that when the ultrasonic density is 0.4 W/cm3, when the ultrasonic action time is 2 min, the sedimentation speed of kaolinite and montmorillonite are improved. Further choosing the appropriate ultrasonic pulse interval can further improve the sedimentation effect, but ultrasonic treatment is not conducive to the clean coal settlement. Further, the clean coal, kaolinite and montmorillonite samples were mixed at a ratio of 2:1:1, and the ultrasonic pulse interval time was changed to perform ultrasonic treatment. The results showed that: for the mixed sample, it settled without ultrasonic treatment, the velocity is 2.67 cm/min. When the ultrasonic density is 0.2 W/cm3 and the ultrasonic pulse interval is 4 s, the settling velocity is increased to 5.41 cm/min. Image analysis and potential characterization show that the proper ultrasonic pulse interval time enables the drug to play more fully, and then the electric double layer is compressed to the greatest extent, and finally the particle agglomeration and the growth of flocs are the best.

  • 加载中
  • [1] 马晓敏, 樊玉萍, 董宪姝, 等. 基于摄像分析法的煤泥絮团特性及相关关系[J]. 矿产综合利用, 2019(6):145-149.MA X M, FAN Y P, DONG X S, et al. Study on characteristics and correlation of coal tailings floc based on video analysis method Ma[J]. Multipurpose Utilization of Mineral Resources, 2019(6):145-149.

    Google Scholar

    MA X M, FAN Y P, DONG X S, et al. Study on characteristics and correlation of coal tailings floc based on video analysis method Ma[J]. Multipurpose Utilization of Mineral Resources, 2019(6):145-149.

    Google Scholar

    [2] 宋帅, 樊玉萍, 马晓敏, 等. 煤泥水中煤与不同矿物相互作用的模拟研究[J]. 矿产综合利用, 2020(1):168-172.SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1):168-172.

    Google Scholar

    SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1):168-172.

    Google Scholar

    [3] 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3):48-55.CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55.

    Google Scholar

    CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55.

    Google Scholar

    [4] 文献才. 平煤天宏难处理煤泥水沉降试验研究[J]. 煤炭工程, 2019, 51(10):148-151.WEN X C. Experimental study on sedimentation of Tianhong difficult to handle coal slurry in Pingdingshan coal mine[J]. Coal Engineering, 2019, 51(10):148-151.

    Google Scholar

    WEN X C. Experimental study on sedimentation of Tianhong difficult to handle coal slurry in Pingdingshan coal mine[J]. Coal Engineering, 2019, 51(10):148-151.

    Google Scholar

    [5] 王云飞, 李宏亮, 董宪姝, 等. 伊利石对煤泥水过滤机制的影响研究[J]. 矿产综合利用, 2020(4):202-208.WANG Y F, LI H L, DONG X S, et al. Study on effect of illite on the filtration mechanism of coal slime water[J]. Multipurpose Utilization of Mineral Resources, 2020(4):202-208.

    Google Scholar

    WANG Y F, LI H L, DONG X S, et al. Study on effect of illite on the filtration mechanism of coal slime water[J]. Multipurpose Utilization of Mineral Resources, 2020(4):202-208.

    Google Scholar

    [6] 张明青, 刘炯天, 何伟, 等. 煤泥水絮凝处理中絮凝体的分形特征[J]. 环境科学研究, 2009, 22(8):956-960.ZHANG M Q, LIU J T, HE W, et al. Fractal characteristics of flocs in coal slime water flocculation treatment[J]. Environmental Science Research, 2009, 22(8):956-960.

    Google Scholar

    ZHANG M Q, LIU J T, HE W, et al. Fractal characteristics of flocs in coal slime water flocculation treatment[J]. Environmental Science Research, 2009, 22(8):956-960.

    Google Scholar

    [7] 王永田, 张明青, 刘炯天. 分形理论在难沉降煤泥水澄清药剂选择中的应用[J]. 煤炭学报, 2010(12):2116-2120.WANG Y T, ZHANG M Q, LIU J T. Application of fractal theory in the selection of clarification agents for difficult-to-settle slime water[J]. Chinese Journal of Coal, 2010(12):2116-2120.

    Google Scholar

    WANG Y T, ZHANG M Q, LIU J T. Application of fractal theory in the selection of clarification agents for difficult-to-settle slime water[J]. Chinese Journal of Coal, 2010(12):2116-2120.

    Google Scholar

    [8] 亓欣, 匡亚莉. 黏土矿物对煤泥表面性质的影响[J]. 煤炭科学技术, 2013, 41(7):126-128.QI X, KUANG Y L. Influence of clay minerals on the surface properties of coal slime[J]. Coal Science and Technology, 2013, 41(7):126-128.

    Google Scholar

    QI X, KUANG Y L. Influence of clay minerals on the surface properties of coal slime[J]. Coal Science and Technology, 2013, 41(7):126-128.

    Google Scholar

    [9] 刘炯天, 张明青, 曾艳, 等. 不同类型黏土对煤泥水中颗粒分散行为的影响[J]. 中国矿业大学学报, 2010, 39(1): 59-63.LIU J T, ZHANG M Q, ZENG Y , et al. Effects of different types of clay on particle dispersion behavior in coal slime water[J]. Journal of China University of Mining and Technology, 2010, 39(1): 59-63.

    Google Scholar

    LIU J T, ZHANG M Q, ZENG Y , et al. Effects of different types of clay on particle dispersion behavior in coal slime water[J]. Journal of China University of Mining and Technology, 2010, 39(1): 59-63.

    Google Scholar

    [10] 戴曦, 张传福. 超声空化与过程强化[J]. 有色金属:冶炼部分, 2001(1):20-22.DAI X, ZHANG C F. Ultrasonic cavitation and process strengthening[J]. Nonferrous Metals:Extractive Metallurgy, 2001(1):20-22.

    Google Scholar

    DAI X, ZHANG C F. Ultrasonic cavitation and process strengthening[J]. Nonferrous Metals:Extractive Metallurgy, 2001(1):20-22.

    Google Scholar

    [11] 李剑波, 董宪姝, 李宏亮, 等. Li, Na, K基蒙脱石的基因特性与其水化膨胀特性的关系[J]. 金属矿山, 2020, 528(6):142-147.LI J B, DONG X Z, LI H L, et al. The relationship between genetic characteristics of Li, Na, K-based montmorillonite and its hydration swelling characteristics[J]. Metal Mines, 2020, 528(6):142-147.

    Google Scholar

    LI J B, DONG X Z, LI H L, et al. The relationship between genetic characteristics of Li, Na, K-based montmorillonite and its hydration swelling characteristics[J]. Metal Mines, 2020, 528(6):142-147.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(662) PDF downloads(199) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint