| Citation: | XU Yi, ZHANG Yin. Rheology and Infrared Spectrum of Diatomite Asphalt Concrete[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 59-66. doi: 10.3969/j.issn.1000-6532.2024.02.010 |
This is an article in the field of ceramics and composites. In order to study the influence of diatomite content on the physical properties, rheological properties and road performance of asphalt mixtures, the basic physical tests, rheological tests, high temperature stability and low temperature crack resistance tests were carried out on asphalt mixtures under different diatomite content.The results show that when the diatomite content is 30%, the softening point, cone penetration and ductility of the asphalt mixture reach the maximum. When the diatomite content is 40%, the penetration of the asphalt mixture reaches the maximum. The law of change in ductility shows an increasing trend. The temperature is 170 ℃ as the preparation temperature of the asphalt mixture. The 30% diatomite content can be selected as the optimal value of low temperature crack resistance of asphalt mixture. At the same time, adding diatomite can effectively improve the high temperature performance of the asphalt mixture, but excessive incorporation of diatomaceous earth will weaken its high temperature performance. As the content of diatomite continues to increase, the variation of some characteristic peaks in the infrared spectrum of asphalt concrete shows a decreasing trend. During the aging process of asphalt concrete, its internal light components are affected by high temperature, and volatilization occurs. However, as the content of diatomite continues to increase, the characteristic peak-to-peak value of the light component of asphalt concrete after aging has not changed much.
| [1] | 胡超, 包惠明, 迟恩涛, 等. 高岭土尾矿沥青混合料抗腐性能实验与机理研究[J]. 矿产综合利用, 2020(5):161-168.HU C, BAO H M, CHI E T, et al. Test and mechanism study on corrosion resistance of kaolin tailings asphalt mixture[J]. Multipurpose Utilization of Mineral Resources, 2020(5):161-168. HU C, BAO H M, CHI E T, et al. Test and mechanism study on corrosion resistance of kaolin tailings asphalt mixture[J]. Multipurpose Utilization of Mineral Resources, 2020(5):161-168. |
| [2] | 赵连平, 郝绍菊, 马竞. 铁尾矿沥青混合料基本性能及老化耐久性研究[J]. 矿产综合利用, 2022(4):111-118.ZHAO L P, HAO S J, MA J. New technology for efficient resource utilization of red mud from bayer process[J]. Multipurpose Utilization of Mineral Resources, 2022(4):111-118. doi: 10.3969/j.issn.1000-6532.2022.04.020 ZHAO L P, HAO S J, MA J. New technology for efficient resource utilization of red mud from bayer process[J]. Multipurpose Utilization of Mineral Resources, 2022(4):111-118. doi: 10.3969/j.issn.1000-6532.2022.04.020 |
| [3] | 王冬冬, 付善春. 磷渣改性沥青混合料的综合利用研究[J]. 矿产综合利用, 2022(4):169-174.WANG D D, FU S C. Study on comprehensive utilization of phosphorus slag modified asphalt mixture[J]. Multipurpose Utilization of Mineral Resources, 2022(4):169-174. doi: 10.3969/j.issn.1000-6532.2022.04.029 WANG D D, FU S C. Study on comprehensive utilization of phosphorus slag modified asphalt mixture[J]. Multipurpose Utilization of Mineral Resources, 2022(4):169-174. doi: 10.3969/j.issn.1000-6532.2022.04.029 |
| [4] | 毛三鹏, 黄宏海, 薄鹏, 等. 基于流变性能的抗油蚀改性沥青高温特性[J]. 科学技术与工程, 2021, 21(13):5518-5523.MAO S P, HUANG H H, BO P, et al. High-temperature characterization of oil-erosion-resistant modified asphalt based on rheological properties[J]. Science, Technology and Engineering, 2021, 21(13):5518-5523. doi: 10.3969/j.issn.1671-1815.2021.13.047 MAO S P, HUANG H H, BO P, et al. High-temperature characterization of oil-erosion-resistant modified asphalt based on rheological properties[J]. Science, Technology and Engineering, 2021, 21(13):5518-5523. doi: 10.3969/j.issn.1671-1815.2021.13.047 |
| [5] | Chen T , Wang S . Study on heat insulation of diatomite asphalt concrete in permafrost regions[J]. Journal of Highway & Transportation Research & Development, 2012, 6(4): 42-48. |
| [6] | 黄维蓉, 任海生, 杨东来. 硅藻土负载环氧改性沥青的制备及其与TAF环氧改性沥青性能的对比[J]. 材料科学与工程学报, 2021, 39(1):117-123.HUANG W R, REN H S, YANG D L. Preparation of diatomaceous earth-loaded epoxy-modified asphalt and its comparison with the performance of TAF epoxy-modified asphalt[J]. Journal of Materials Science and Engineering, 2021, 39(1):117-123. HUANG W R, REN H S, YANG D L. Preparation of diatomaceous earth-loaded epoxy-modified asphalt and its comparison with the performance of TAF epoxy-modified asphalt[J]. Journal of Materials Science and Engineering, 2021, 39(1):117-123. |
| [7] | 贾军. 硅藻土与纤维复合添加剂对高比例RAP掺量热再生混合料耐久性能的增强作用[J]. 公路, 2018, 63(1):183-190.JIA J. Enhancement of diatomaceous earth and fiber composite additives on the durability performance of thermally recycled mixes with high percentage of RAP blending[J]. Highway, 2018, 63(1):183-190. JIA J. Enhancement of diatomaceous earth and fiber composite additives on the durability performance of thermally recycled mixes with high percentage of RAP blending[J]. Highway, 2018, 63(1):183-190. |
| [8] | 李灿华, 向晓东, 周溪滢, 等. 硅藻土微表处混合料的制备及性能研究[J]. 矿产综合利用, 2013(6):59-62.LI C H, XIANG X D, ZHOU X Y, et al. Preparation and performance study of diatomite micro-surface treatment mix[J]. Multipurpose Utilization of Mineral Resources, 2013(6):59-62. doi: 10.3969/j.issn.1000-6532.2013.06.016 LI C H, XIANG X D, ZHOU X Y, et al. Preparation and performance study of diatomite micro-surface treatment mix[J]. Multipurpose Utilization of Mineral Resources, 2013(6):59-62. doi: 10.3969/j.issn.1000-6532.2013.06.016 |
| [9] | 黄建平. 硅藻土粉沥青胶浆及混合料性能研究[D]. 长春: 吉林大学, 2013.HUANG J P. Research on the performance of diatomite powder asphalt mortar and mixture [D]. Changchun: Jilin University, 2013. HUANG J P. Research on the performance of diatomite powder asphalt mortar and mixture [D]. Changchun: Jilin University, 2013. |
| [10] | 张旭. 硅藻土的矿物学特征及改性沥青中的应用[D]. 长春: 吉林大学, 2004.ZHANG X. Mineralogical characterization of diatomaceous earth and its application in modified asphalt[D]. Changchun: Jilin University, 2004. ZHANG X. Mineralogical characterization of diatomaceous earth and its application in modified asphalt[D]. Changchun: Jilin University, 2004. |
| [11] | 安静. 桥面铺装环氧沥青混合料拌和流变特性研究[J]. 新型建筑材料, 2019, 46(5):29-32.AN J. Research on the mixing and rheological characteristics of epoxy asphalt mixtures for bridge deck paving[J]. New Construction Materials, 2019, 46(5):29-32. AN J. Research on the mixing and rheological characteristics of epoxy asphalt mixtures for bridge deck paving[J]. New Construction Materials, 2019, 46(5):29-32. |
| [12] | 朱春凤. 硅藻土-玄武岩纤维复合改性沥青混合料路用性能及力学特性研究[D]. 长春: 吉林大学, 2018.ZHU C F. Research on road performance and mechanical properties of diatomite-basalt fiber composite modified asphalt mixtures [D]. Changchun: Jilin University, 2018. ZHU C F. Research on road performance and mechanical properties of diatomite-basalt fiber composite modified asphalt mixtures [D]. Changchun: Jilin University, 2018. |
| [13] | 迟凤霞, 王洋洋, 严守靖, 等. 纳米TiO2负载方式对半柔性路面的路用性能影响研究[J]. 中外公路, 2020, 40(6):58-61.CHI F X, WANG Y Y, YAN S J, et al. Study on the effect of nano TiO2 loading mode on the road performance of semi-flexible pavements[J]. Chinese and Foreign Highway, 2020, 40(6):58-61. CHI F X, WANG Y Y, YAN S J, et al. Study on the effect of nano TiO2 loading mode on the road performance of semi-flexible pavements[J]. Chinese and Foreign Highway, 2020, 40(6):58-61. |
| [14] | Ren H , Huang W , Yang D . Design and performance investigation of drainage ultra-thin wearing course based on diatomite-supported epoxy-modified asphalt mixture[J]. Journal of Testing and Evaluation, 2021, 49(4): 20180491. |
| [15] | 王叶丹. 硅藻土沥青胶浆抗老化微观机理及砂浆力学性能研究[D]. 长春: 吉林大学, 2015.WANG Y D. Research on anti-aging micro-mechanism of diatomaceous earth asphalt mortar and mechanical properties of mortar [D]. Changchun: Jilin University, 2015. WANG Y D. Research on anti-aging micro-mechanism of diatomaceous earth asphalt mortar and mechanical properties of mortar [D]. Changchun: Jilin University, 2015. |
| [16] | 张葆琳. 基于红外光谱的沥青结构表征研究[D]. 武汉: 武汉理工大学, 2014.ZHANG B L. Research on structural characterization of asphalt based on infrared spectroscopy[D]. Wuhan: Wuhan University of Technology, 2014. ZHANG B L. Research on structural characterization of asphalt based on infrared spectroscopy[D]. Wuhan: Wuhan University of Technology, 2014. |
Variation of asphalt mixture performance under different diatomite content and temperature
Variation law of dynamic shear rheological properties
Variation law of asphalt mixture's rheological properties at low temperature
Variation law of dynamic stability of asphalt mixture under different diatomite content
Variation law of maximum bending strain and bending strength of asphalt mixture under different diatomite content
Infrared spectra of asphalt concrete under the action of diatomite with different content
Infrared spectrum of asphalt after coagulation and aging
Relationship between the amount of functional group carbonyl and sulfoxide group generated and the amount of diatomite