Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 6
Article Contents

Ning Jiangfeng, Xu Hanbing, Geng Liang, Zeng Jianhong, Yao Wei, Sun Hao. Effect of Fe3+ on Flotation Separation of Fluorite and Calcite in Sodium Silicate System[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 15-22. doi: 10.3969/j.issn.1000-6532.2023.06.003
Citation: Ning Jiangfeng, Xu Hanbing, Geng Liang, Zeng Jianhong, Yao Wei, Sun Hao. Effect of Fe3+ on Flotation Separation of Fluorite and Calcite in Sodium Silicate System[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 15-22. doi: 10.3969/j.issn.1000-6532.2023.06.003

Effect of Fe3+ on Flotation Separation of Fluorite and Calcite in Sodium Silicate System

  • This is an essay in the field of mineral processing engineering. Fluorite and calcite are calcium-bearing minerals with similar physical and chemical properties. Flotation separation of the two minerals has always been one of the difficult problems in the ore processing field. The effect of Fe3+ on flotation separation of fluorite and calcite in sodium silicate system and its mechanism was studied by flotation test, adsorption amount measurement, Zeta potential measurement and chemical calculation of flotation solution. The flotation test results show that, compared with sodium silicate, the addition of Fe3+ has a stronger inhibition effect on the flotation of calcite, but little effect on the flotation of fluorite, which can achieve the selective separation of the two minerals. The results of adsorption amount measurement, Zeta potential measurement and chemical calculation of flotation solution showed that after introducing Fe3+ into the sodium silicate system, Fe-(OH)X, Fe-sodium silicate polymer and Si(OH)4 were selectively adsorbed on the surface of calcite, which hindered the further adsorption of sodium oleate as collector, thus achieving the separation of fluorite and calcite.

  • 加载中
  • [1] 赵鹏, 郑厚义, 张新, 等. 中国萤石产业资源现状及发展建议[J]. 化工矿产地质, 2020, 42(2):178-183. ZHAO P, ZHENG H Y, ZHANG X, et al. Current status of fluorspar industry resources and development proposals in China[J]. Chemical and Mineral Geology, 2020, 42(2):178-183. doi: 10.3969/j.issn.1006-5296.2020.02.014

    CrossRef Google Scholar

    ZHAO P, ZHENG H Y, ZHANG X, et al. Current status of fluorspar industry resources and development proposals in China[J]. Chemical and Mineral Geology, 2020, 42(2): 178-183. doi: 10.3969/j.issn.1006-5296.2020.02.014

    CrossRef Google Scholar

    [2] 曾小波, 印万忠. 共伴生型萤石矿浮选研究进展与展望[J]. 矿产综合利用, 2021(1):1-7. ZENG X B, YIN W Z. Resesrch progress and prospect of flotation of assou ciated fluorite minerdls[J]. Multipurpose Utilization of Mineral Resources, 2021(1):1-7. doi: 10.3969/j.issn.1000-6532.2021.01.001

    CrossRef Google Scholar

    ZENG X B, YIN W Z. Resesrch progress and prospect of flotation of assou ciated fluorite minerdls[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 1-7. doi: 10.3969/j.issn.1000-6532.2021.01.001

    CrossRef Google Scholar

    [3] Jiang W, Gao Z, Khoso S A, et al. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite[J]. Applied Surface Science, 2018, 435(MAR.30):752-758.

    Google Scholar

    [4] Tian J, Xu L, Sun W, et al. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite[J]. Minerals Engineering, 2019, 137:160-170. doi: 10.1016/j.mineng.2019.04.011

    CrossRef Google Scholar

    [5] 钱有军, 高莉. 萤石与方解石、重晶石等盐类矿物浮选分离现状[J]. 中国非金属矿工业导刊, 2014, 35(4):18-21. QIAN Y J, GAO L. Current status of flotation separation of fluorite from calcite, barite and other salt minerals[J]. China Nonmetallic Mineral Industry Guide, 2014, 35(4):18-21. doi: 10.3969/j.issn.1007-9386.2014.04.006

    CrossRef Google Scholar

    QIAN Y J, GAO L. Current status of flotation separation of fluorite from calcite, barite and other salt minerals[J]. China Nonmetallic Mineral Industry Guide, 2014, 35(4): 18-21. doi: 10.3969/j.issn.1007-9386.2014.04.006

    CrossRef Google Scholar

    [6] 宁江峰, 李茂林, 崔瑞, 等. ZnSO4•7H2O与水玻璃组合抑制剂对萤石、方解石浮选分离的影响[J]. 矿产综合利用, 2020(6):186-192. NING J F, LI M L, CUI R, et al. Effect of ZnSO4•7H2O and sodium silicate as combination inhibitors on flotation separation of fluorite and calcite[J]. Multipurpose Utilization of Mineral Resources, 2020(6):186-192.

    Google Scholar

    NING J F, LI M L, CUI R, et al. Effect of ZnSO4•7H2O and sodium silicate as combination inhibitors on flotation separation of fluorite and calcite[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 186-192.

    Google Scholar

    [7] Dong, Liuyang, Jiao, et al. Effect of acidified water glass on the flotation separation of scheelite from calcite using mixed cationic/anionic collectors[J]. Applied Surface Science , 2018.

    Google Scholar

    [8] Yang Y, Xu H, Tian J, et al. Selective flotation of ilmenite from olivine using the acidified water glass as depressant[J]. International Journal of Mineral Processing, 2016.

    Google Scholar

    [9] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988: 336-337.

    Google Scholar

    WANG D Z, HU Y H. Flotation solution chemistry [M]. Changsha: Hunan Science and Technology Press, 1988: 336-337.

    Google Scholar

    [10] Dong L Y, Jiao F, Qin W Q, et al. Effect of acidified water glass on the flotation separation of scheelite from calcite using mixed cationic/anionic collectors[J]. Applied Surface Science, 2018, 444:747-756. doi: 10.1016/j.apsusc.2018.03.097

    CrossRef Google Scholar

    [11] 张波, 李解, 张雪峰, 等. Cu2+, Fe3+对萤石浮选的活化作用机制[J]. 稀有金属, 2016, 40(9):963-968. ZHANG B, LI J, ZHANG X F, et al. Activation mechanism of Cu2+, Fe3+ on fluorite flotation[J]. Rare Metals, 2016, 40(9):963-968.

    Google Scholar

    ZHANG B, LI J, ZHANG X F, et al. Activation mechanism of Cu2+, Fe3+ on fluorite flotation[J]. Rare Metals, 2016, 40(9): 963-968.

    Google Scholar

    [12] Wei Z, Hu Y H, Han H S, et al. Selective flotation of scheelite from calcite using Al-Na2 SiO3 polymer as depressant and Pb-BHA complexes as collector[J]. Minerals Engineering, 2018, 120:29-34. doi: 10.1016/j.mineng.2018.01.036

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(915) PDF downloads(54) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint