Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 5
Article Contents

Shi Guiming, Zhou Yichao, Zhu Lang, Wang Chengdong. Effect of Crushing Particle Size for Leaching of Lithium and Cobalt with Citric Acid from Spend Lithium Ion Battery[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 70-74. doi: 10.3969/j.issn.1000-6532.2023.05.013
Citation: Shi Guiming, Zhou Yichao, Zhu Lang, Wang Chengdong. Effect of Crushing Particle Size for Leaching of Lithium and Cobalt with Citric Acid from Spend Lithium Ion Battery[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 70-74. doi: 10.3969/j.issn.1000-6532.2023.05.013

Effect of Crushing Particle Size for Leaching of Lithium and Cobalt with Citric Acid from Spend Lithium Ion Battery

More Information
  • This is an essay in the field of metallurgical engineering. The effects of crushing particle size and leaching conditions on the leaching of lithium cobalt from spend lithium-ion batteries in the citric acid environment were studied, which provided some reference for the recovery of different types of mixed spend lithium-ion batteries. The results showed that Mn, Al, Ni, Co and Li accounted for a large proportion of the contents in mixed different types of spend lithium-ion batteries. Due to the larger recovery value of Co and Li and simplify the recovery process, only Co and Li be recovered. The crushing particle size has little influence on the leaching rate of lithium cobalt in the range of -5 mm, while the leaching rate of lithium cobalt in the larger crushing particle size is not high, which may be lithium and cobalt wrapped in the middle of particles and cannot contact with the leaching solution, thus reducing the leaching effect. For mixed different types of spend lithium-ion batteries, under the conditions of -5 mm particle size, citric acid concentration 1.0 mol/L, leaching temperature 65 ℃, solid-liquid ratio 1 g/100 mL, H2O2 concentration 3%, leaching time 55 min, stirring speed 30 r/min, the lithium leaching rate of 97.86% and cobalt leaching rate of 98.01% are obtained.

  • 加载中
  • [1] 张晓虎, 孙现众, 张熊, 等. 锂离子电容器在新能源领域应用展望[J]. 电工电能新技术, 2020, 39(11):48-58. ZHANG X H, SUN X Z, ZHANG X, et al. Prospect of lithium-ion capacitor application in new energy field[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(11):48-58.

    Google Scholar

    ZHANG X H, SUN X Z, ZHANG X, et al. Prospect of lithium-ion capacitor application in new energy field[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(11): 48-58.

    Google Scholar

    [2] 王萌萌, 张付申. 废旧锂电池的机械化学处理方法与机制[J]. 环境工程学报, 2017, 11(2):1069-1074. WANG M M, ZHANG F S. Mechanochemical recycling of spent lithium-ion battery and reaction mechanisms clarification[J]. Chinese Journal of Environmental Engineering, 2017, 11(2):1069-1074.

    Google Scholar

    WANG M M, ZHANG F S. Mechanochemical recycling of spent lithium-ion battery and reaction mechanisms clarification[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 1069-1074.

    Google Scholar

    [3] 李金龙, 何亚群, 付元鹏, 等. 废弃锂离子电池正极材料酸浸出实验研究[J]. 矿产综合利用, 2020(2):128-134. LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2):128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023

    CrossRef Google Scholar

    LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023

    CrossRef Google Scholar

    [4] 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发技术现状、革新及展望[J]. 矿产综合利用, 2020(6):110-120. WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    CrossRef Google Scholar

    WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    CrossRef Google Scholar

    [5] 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1):1-9. WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1):1-9.

    Google Scholar

    WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 1-9.

    Google Scholar

    [6] 朱华炳, 卫道柱, 葛晓倩, 等. 废旧动力电池回收的机械拆解系统[J]. 机械工程师, 2017(12):69-72. ZHU H B, WEI D Z, GE X Q, et al. Mechanical dismantling system for recycling waste power battery[J]. Mechanical Engineer, 2017(12):69-72. doi: 10.3969/j.issn.1002-2333.2017.12.024

    CrossRef Google Scholar

    ZHU H B, WEI D Z, GE X Q, et al. Mechanical dismantling system for recycling waste power battery[J]. Mechanical Engineer, 2017(12): 69-72. doi: 10.3969/j.issn.1002-2333.2017.12.024

    CrossRef Google Scholar

    [7] 邓孝荣, 曾桂生, 李卓, 等. 氧化亚铁硫杆菌浸出废旧锂离子电池的工艺条件[J]. 环境化学, 2012, 31(9):1381-1386. DENG X R, ZENG G S, LI Z, et al. Optimization conditions of bioleaching spent lithium-ion batteries by thiobacillus ferrooxidans[J]. Environmental Chemistry, 2012, 31(9):1381-1386.

    Google Scholar

    DENG X R, ZENG G S, LI Z, et al. Optimization conditions of bioleaching spent lithium-ion batteries by thiobacillus ferrooxidans[J]. Environmental Chemistry, 2012, 31(9): 1381-1386.

    Google Scholar

    [8] 刘星, 李成秀, 程仁举, 等. 国外某锂多金属矿选矿实验[J]. 矿产综合利用, 2019(2):65-69. LIU X, LI C X, CHENG R J, et al. Test of the beneficiation of one lithium polymetallic ore overseas[J]. Multipurpose Utilization of Mineral Resources, 2019(2):65-69.

    Google Scholar

    LIU X, LI C X, CHENG R J, et al. Test of the beneficiation of one lithium polymetallic ore overseas[J]. Multipurpose Utilization of Mineral Resources, 2019(2): 65-69.

    Google Scholar

    [9] 魏锦雯, 杜英, 谢丽娟, 等. 电动汽车废旧电池回收工艺研究[J]. 内燃机与配件, 2020(1):23-24. WEI J W, DU Y, XIE L J, et al. Research on recycling process of electric vehicle waste battery[J]. Internal Combustion Engine & Parts, 2020(1):23-24.

    Google Scholar

    WEI J W, DU Y, XIE L J, et al. Research on recycling process of electric vehicle waste battery[J]. Internal Combustion Engine & Parts, 2020(1): 23-24.

    Google Scholar

    [10] 张飞, 陆颖舟. 一步法回收和再生废旧钴酸锂电池中的钴酸锂[J]. 化工进展, 2019, 38(8):3874-3880. ZHANG F, LU Y Z. One-step recovery and regeneration of LiCoO2 from the spent lithiumcobalt oxide battery[J]. Chemical Industry and Engineering Progress, 2019, 38(8):3874-3880.

    Google Scholar

    ZHANG F, LU Y Z. One-step recovery and regeneration of LiCoO2 from the spent lithiumcobalt oxide battery[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3874-3880.

    Google Scholar

    [11] 陈超, 张裕书, 张少翔, 等. 川西九龙地区低品位锂辉石浮选实验研究[J]. 矿产综合利用, 2019(4):55-58. CHEN C, ZHANG Y S, ZHANG S X, et al. Flotation test of low-grade spodumene in the Jiulong area of west Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(4):55-58. doi: 10.3969/j.issn.1000-6532.2019.04.011

    CrossRef Google Scholar

    CHEN C, ZHANG Y S, ZHANG S X, et al. Flotation test of low-grade spodumene in the Jiulong area of west Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 55-58. doi: 10.3969/j.issn.1000-6532.2019.04.011

    CrossRef Google Scholar

    [12] 席国喜, 高修艳, 姚路. 柠檬酸溶解废锂离子电池正极材料的研究[J]. 化学研究与应用, 2013, 25(8):1114-1119. XI G X, GAO X Y, YAO L. Study on the dissolution conditions of waste lithium-ionbattery anode material in the citric acid[J]. Chemical Research and Application, 2013, 25(8):1114-1119. doi: 10.3969/j.issn.1004-1656.2013.08.008

    CrossRef Google Scholar

    XI G X, GAO X Y, YAO L. Study on the dissolution conditions of waste lithium-ionbattery anode material in the citric acid[J]. Chemical Research and Application, 2013, 25(8): 1114-1119. doi: 10.3969/j.issn.1004-1656.2013.08.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(699) PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint