Citation: | Shao Kun, Fan Jianxiong, Zheng Hao, Yu Hao. Determination of Gold in Ore Samples by Flame Atomic Absorption Spectrometry of Sealed Dissolution after Adsorption using Polyurethane Foam[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 182-187. doi: 10.3969/j.issn.1000-6532.2023.04.028 |
This is an essay in the field of mineral analysis. After the samples were roasted and digested in 50% aqua regia by sealed dissolution,the gold in ore samples were adsorbed by 0.25g polyurethane foam during the oscillating, the polyurethane foam was washed to removing the slurry and acid, and gold was eluted out from polyurethane foam with 1% thiourea. Thus, a determination method of gold in ore samples by flame atomic absorption spectrometry of sealed dissolution after adsorption with polyurethane foam was established.The roasting method of some special gold ore samples was discussed.The conditions of sealed dissolution time, foam pretreatment, adsorption temperature and solution temperature were optimized, the results showed that when the sealed dissolution for 2 h, the gold was completely decomposed. After the polyurethane foam was treated with 5%HCl, the adsorption recoveries of gold could reach 95% at room temperature, the temperature of solution and standard solution shall be consistent with room temperature during determination. The calibration curve was prepared by foam adsorption and desorption process. Under the selected experimental conditions, the limit of detection was 0.13 μg/g, the limit of quantification was 0.43 μg/g, and the upper limit of determination was 80 μg/g. The standard recoveries were between 98.7% and 101%, the relative standard deviations(RSD, n=5) were between 1.10% and 2.07%. Verified by the determination of gold ore certified reference materials, the results were basically consistent with the certified value.
[1] | 薛光. 金的分析化学[M]. 北京: 宇航出版社, 1990. XUE G. Analytical chemistry of gold[M]. Beijing: Yuhang Publishing House, 1990. |
[2] | 邱曼,黄学雄,毛益林,等. 我国金矿资源概况及选冶技术研究进展[J]. 矿产综合利用, 2023(2):106-115. QIU M, HUANG X X, MAO Y L. General situation of gold resources and research progress of mineral processing and hydrometallurgy technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(2):106-115. QIU M, HUANG X X, MAO Y L, et al. General situation of gold resources and research progress of mineral processing and hydrometallurgy technology in China[J],Multipurpose Utilization of Mineral Resources, 2023(2):106-115. |
[3] | 庄艾春, 肖红新. 铅试金富集-火焰原子吸收光谱法测定含金工业污泥中的金[J]. 黄金, 2018, 39(6):75-77. ZHUANG A C, XIAO H X. Determination of gold in gold-bearing industrial sludge by lead assay enrichment-fire atomic absorption spectrometry[J]. Gold, 2018, 39(6):75-77. ZHUANG A C, XIAO H X. Determination of gold in gold-bearing industrial sludge by lead assay enrichment-fire atomic absorption spectrometry[J]. Gold, 2018, 39(6): 75-77. |
[4] | 吴晶, 张明杰, 熊玉祥. 密闭水浴溶矿-泡塑吸附等离子体质谱法高效测定地质样品中的痕量金[J]. 华中师范大学学报(自然科学版), 2017, 51(5):626-637. WU J, ZHANG M J, XIONG Y X. Determination of trace gold in geological samples combining foam adsorption inductively coupled plasma-mass spectrometry with closed water bath dissolution[J]. Journal of Central China Normal University(Nat. Sci. ), 2017, 51(5):626-637. WU J, ZHANG M J, XIONG Y X. Determination of trace gold in geological samples combining foam adsorption inductively coupled plasma-mass spectrometry with closed water bath dissolution[J]. Journal of Central China Normal University(Nat. Sci. ), 2017, 51(5): 626-637. |
[5] | 高升, 柳诚, 陈洪流, 等. 蒸汽浴封闭溶样-石墨炉原子吸收法测定化探样品中的痕量金[J]. 黄金, 2017, 38(12):65-68. GAO S, LIU C, CHEN H L, et al. Determination of trace gold in geochemical samples by GFAAS with pressurized sample decomposition in steam bath[J]. Gold, 2017, 38(12):65-68. GAO S, LIU C, CHEN H L, et al. Determination of trace gold in geochemical samples by GFAAS with pressurized sample decomposition in steam bath[J]. Gold, 2017, 38(12): 65-68. |
[6] | 邱红绪, 杨建博, 边朋沙, 等. 蒸汽加热消解-电感耦合等离子体质谱法测定化探样品中痕量金[J]. 冶金分析, 2019, 39(12):31-37. QIU H X, YANG J B, BIAN P S, et al. Determination of trace gold in geochemical sample by inductively coupled plasma mass spectrometry with steam heating digestion[J]. Metallurgical Analysis, 2019, 39(12):31-37. QIU H X, YANG J B, BIAN P S, et al. Determination of trace gold in geochemical sample by inductively coupled plasma mass spectrometry with steam heating digestion[J]. Metallurgical Analysis, 2019, 39(12): 31-37. |
[7] | 邱宏喜, 王志杰, 王达成, 等. 封闭溶样-AAS法测定特高品位矿石中的金银[J]. 黄金, 2014, 35(3):80-84. QIU H X, WANG Z J, WANG D C, et al. Determination of Au and Ag in high grade ores by sealed dissolution-AAS method[J]. Gold, 2014, 35(3):80-84. QIU H X, WANG Z J, WANG D C, et al. Determination of Au and Ag in high grade ores by sealed dissolution-AAS method[J]. Gold, 2014, 35(3): 80-84. |
[8] | 多昊伟. 活性炭吸附-原子吸收法测金在塔吉克斯坦金矿的应用[J]. 中国矿业, 2018, 27(6):100-102. DUO H W. The application of activated carbon adsorption-atomic absorption spectrometry in Tajikistan gold mine[J]. China Mining Magazine, 2018, 27(6):100-102. DUO H W. The application of activated carbon adsorption-atomic absorption spectrometry in Tajikistan gold mine[J]. China Mining Magazine, 2018, 27(6): 100-102. |
[9] | 孔会民. 聚氨酯泡沫塑料吸附-火焰原子吸收光谱法测定铜选矿流程样品中金[J]. 冶金分析, 2017, 37(3):29-33. KONG H M. Determination of gold in beneficiation process sample of copper by atomic absorption spectrometry after polyurethane foam plastic adsorption[J]. Metallurgical Analysis, 2017, 37(3):29-33. KONG H M. Determination of gold in beneficiation process sample of copper by atomic absorption spectrometry after polyurethane foam plastic adsorption[J]. Metallurgical Analysis, 2017, 37(3): 29-33. |
[10] | 申玉民, 罗治定, 郭小彪, 等. 泡塑分离富集-火焰原子荧光光谱法测定地球化学样品中的痕量金[J]. 岩矿测试, 2020, 31(1):127-134. SHEN Y M, LUO Z D, GUO X B, et al. Determination of trace gold in geochemical samples by flame atomic fluoresce spectrometry with PUFP separation and enrichment[J]. Rock and Mineral Analysis, 2020, 31(1):127-134. SHEN Y M, LUO Z D, GUO X B, et al. Determination of trace gold in geochemical samples by flame atomic fluoresce spectrometry with PUFP separation and enrichment[J]. Rock and Mineral Analysis, 2020, 31(1): 127-134. |
[11] | 符招弟, 傅饶, 杨炳红. 分相浸出-火焰原子吸收光谱法测定高硫高砷金矿石及选冶物料中金的赋存状态[J]. 冶金分析, 2015, 35(11):23-27. FU Z D, FU R, YANG B H. Application of phase separation leaching-flame atomic absorption spectrometry to the determination of occurrence state of gold in high-sulfur high-arsenic gold ore and smelting materials[J]. Metallurgical Analysis, 2015, 35(11):23-27. FU Z D, FU R, YANG B H. Application of phase separation leaching-flame atomic absorption spectrometry to the determination of occurrence state of gold in high-sulfur high-arsenic gold ore and smelting materials[J]. Metallurgical Analysis, 2015, 35(11): 23-27. |
[12] | 文田耀, 孙文军, 周瑶, 等. 封闭溶样-原子吸收法测定钼精矿中的金[J]. 黄金, 2013, 34(8):78-80. WEN T Y, SUN W J, ZHOU Y, et al. Determination of gold in molybdenum concentrates by AAS with sealed dissolution[J]. Gold, 2013, 34(8):78-80. WEN T Y, SUN W J, ZHOU Y, et al. Determination of gold in molybdenum concentrates by AAS with sealed dissolution[J]. Gold, 2013, 34(8):78-80. |
[13] | 王干珍, 严慧, 易晓明, 等. 氯化铵除锑-电感耦合等离子体质谱法测定锑矿石中的金[J]. 理化检验-化学分册, 2016, 52(3):342-344. WANG G Z, YAN H, YI X M, et al. Determination of gold in antimony ore by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2016, 52(3):342-344. WANG G Z, YAN H, YI X M, et al. Determination of gold in antimony ore by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2016, 52(3): 342-344. |
Effect of sealed dissolution time for gold recovery
Effect of foam pretreatment for gold recovery
Effect of solution temperature for gold recovery
Effect of determination solution temperature for gold absorbance
Standard curve of gold
Adsorption curve of gold by foam