Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 4
Article Contents

Chen Wei, Zhou Jiayun. A Special Rare-earth Mineral —Eudialyte[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 174-176, 193. doi: 10.3969/j.issn.1000-6532.2023.04.026
Citation: Chen Wei, Zhou Jiayun. A Special Rare-earth Mineral —Eudialyte[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 174-176, 193. doi: 10.3969/j.issn.1000-6532.2023.04.026

A Special Rare-earth Mineral —Eudialyte

  • This is an essay in the field of earth science, which mainly reviews the basic characteristics of eudialyte, a rare earth-containing mineral in alkaline rocks. Eudialyte is a common accessory mineral and hydrothermal mineral of magmatic rock, which is vulnerable to weathering and oxidation and other epigenetic effects. It can better record and preserve the original information of magma and hydrothermal activities, so it is a common tracer mineral for studying magma and/or hydrothermal processes. Through the review of the article, we hope to provide a more comprehensive basic understanding for deepening the Mineralogy and geochemical research of Eudialyte, strengthening the prospecting work of Eudialyte REE deposit, and widely carrying out the discussion of geological problems related to Eudialyte.

  • 加载中
  • [1] U. S. Geological Survey[R]. Mineral Commodity Summaries, 2023: 142-143.

    Google Scholar

    [2] Schilling J, Wu F, McCammon C, et al. The compositional variability of eudialyte-group minerals[J]. Mineral. Mag. 2011, 75, 87–115.

    Google Scholar

    [3] Goodenough K M, Schilling J, Jonsson E, et al. Europe's rare earth element resource potential: an overview of REE metallogenetic provinces and theirgeodynamic setting[J]. Ore Geol. Rev, . 2016, 72: 838–856.

    Google Scholar

    [4] Paulick H, Machacek E. The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives[J]. Res. Policy, 2017, 52:134-153. doi: 10.1016/j.resourpol.2017.02.002

    CrossRef Google Scholar

    [5] Stromeyer F. Summary of meeting 16 December 1819 [Fossilien. . . ] [C]. Göttingische Gelehrte Anzeigen, 1819(3): 1993-2003.

    Google Scholar

    [6] 邬斌, 王汝成, 刘晓东, 等. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义[J]. 岩石学报, 2018, 34(6):1741-1757. WU B, WANG R C, LIU X D, et al. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2018, 34(6):1741-1757.

    Google Scholar

    WU B, WANG R C, LIU X D, et al. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2018, 34( 6) : 1741-1757.

    Google Scholar

    [7] Wu F Y, Yang Yue Heng, Marks Michael A W, et al. 2010. In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS[J]. Chemical Geology, 273(1-2): 8-34.

    Google Scholar

    [8] Borst A M, A A Finch, H Friis, et al. Structural state of rare earth elements in eudialyte-group minerals[J]. Mineralogical Magazine, 2019, 84(1):19-34.

    Google Scholar

    [9] Pfaff K, Wenzel T, Schilling J, et al. A fast and easy-to use approach to cation site assignment for eudialyte-group minerals[J]. Neues Jahrbuch fuer Mineralogie, 2010, 187:69-81. doi: 10.1127/0077-7757/2010/0166

    CrossRef Google Scholar

    [10] Marks M A W, Markl G. A global review on agpaitic rocks[J]. Earth-Sci. Rev., 2017, 173:229-258. doi: 10.1016/j.earscirev.2017.06.002

    CrossRef Google Scholar

    [11] Ratschbacher B C, Marks M A W, Bons P D, et al. Emplacement and geochemical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: The lujavrites of the Ilímaussaq complex, SW Greenland[J]. Lithos, 2015, 231.

    Google Scholar

    [12] Sørensen H. Agpaitic nepheline syenites: a potential source of rare elements[J]. Appl. Geochem., 1992(7):417-427.

    Google Scholar

    [13] Kogarko L N, Lahaye Y, Brey G P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics[J]. Mineral. Petrol., 2010, 98:197-208. doi: 10.1007/s00710-009-0066-1

    CrossRef Google Scholar

    [14] Marks M A W, Hettmann K, Schilling J, et al. The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages[J]. J. Petrol., 2011, 52:439-455. doi: 10.1093/petrology/egq086

    CrossRef Google Scholar

    [15] Sørensen H,. The agpaitic rocks - an overview[J]. Mineral. Mag., 1997, 61:485-498. doi: 10.1180/minmag.1997.061.407.02

    CrossRef Google Scholar

    [16] Schilling J, Marks M, Wenzel T, et al. Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: a case study from Tamazeght, Morocco[J]. Can. Mineral, 2009, 47:351-365. doi: 10.3749/canmin.47.2.351

    CrossRef Google Scholar

    [17] Kramm U, Kogarko L N. Nd and Sr isotope signatures of the Khibina und Lovozero agpaitic centres, Kola Alkaline Province, Russia[J]. Lithos, 1994, 32:225-242. doi: 10.1016/0024-4937(94)90041-8

    CrossRef Google Scholar

    [18] Mitchell R H, Liferovich R P. Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa[J]. Lithos, 2006, 91:352-372. doi: 10.1016/j.lithos.2006.03.025

    CrossRef Google Scholar

    [19] Hatch G P. TMR advanced rare-earth projects index. Technology Metal Research. March 2014. Available online: http://www.techmetalsresearch.com/metrics-indices/tmr-advanced-rare-earth-projects-index(accessed on 24 July 2017)

    Google Scholar

    [20] 冯雪茹, 刘述平, 李超, 等. 由低浓度稀土溶液萃取回收稀土的研究[J]. 矿产综合利用, 2018, 39(1):17-21. FENG X R, LIU S P, LI C, et al. Study on the extraction and recovery of rare earth from low concentration rare earth solution[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(1):17-21.

    Google Scholar

    FENG X R, LIU S P, LI C, et al. Study on the extraction and recovery of rare earth from low concentration rare earth solution[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(1): 17-21.

    Google Scholar

    [21] 文伟, 陈福林, 余新文, 等. 某含硫萤石重晶石共伴生氟碳铈稀土矿硫脱除必要性及回收试验[J]. 矿产综合利用, 2019, 40(6):45-48. WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(6):45-48.

    Google Scholar

    WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(6): 45-48.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(1288) PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint