Citation: | Yan Weiping, Li Weisi, Yang Yaohui, Zeng Xiaobo, Deng Jian, Li Lun. Research on Mineral Processing Technology of Ultrafine Ilmenite Resources in Panzhihua-Xichang Area[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 55-61. doi: 10.3969/j.issn.1000-6532.2023.04.008 |
This is an essay in the field of mineral processing engineering. Aiming at the problem of difficult recovery of ultrafine ilmenite from a concentrator in Panzhihua-Xichang Area, a comparative study of flotation process was carried out. Using direct flotation, desliming flotation, "centrifugal-flotation", "superconducting flotation", "strong magnetic flotation", "suspension vibration-flotation" and other beneficiation processes, the test results show that: direct flotation and desliming flotation processes can not obtain titanium concentrate products with TiO2 grade greater than 46%. Suspension vibration and high intensity magnetic separation can obtain higher grade preenriched concentrate, which is conducive to the subsequent flotation operation. Centrifugation and superconductivity can obtain higher recovery of preenriched concentrate, which can ensure the effective recovery of ilmenite. But considering that superconducting preenrichment technology industry implementation investment is large, there is no mature industrial case at present; The high intensity magnetic separation and suspended vibration preconcentration process are easy to be industrialized, but the single processing capacity of the suspended vibration separator is limited. Therefore, the optimal flotation process was finally determined to be "strong magnetic flotation", which could obtain the index of titanium concentrate grade of 46.62%, recovery rate of 58.32% in open flotation operation and recovery rate of 43.78% in the whole process.
[1] | 严伟平, 曾小波. 攀西地区钒钛磁铁矿资源开发利用水平评估方法研究[J]. 矿产综合利用, 2020(6):79-83. YAN W P, ZENG X B. Study on the evaluation method of development and utilization level of vanadium-titanium magnetite mine in Panxi district[J]. Multipurpose Utilization of Mineral Resources, 2020(6):79-83. doi: 10.3969/j.issn.1000-6532.2020.06.014 YAN W P, ZENG X B. Study on the evaluation method of development and utilization level of vanadium-titanium magnetite mine in Panxi district[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 79-83. doi: 10.3969/j.issn.1000-6532.2020.06.014 |
[2] | 惠 博, 杨耀辉. 攀西红格矿区橄辉岩型钒钛磁铁矿矿石性质研究及对选矿工艺的影响[J]. 矿产综合利用, 2020(4):126-129. HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021 HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on Mineral Processing Technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 126-129. doi: 10.3969/j.issn.1000-6532.2020.04.021 |
[3] | 叶恩东, 吴轩. 攀西钛精矿主要杂质元素赋存状态研究[J]. 钢铁钒钛, 2017, 38(4):63-68. YE E D, WU X. Research of the occurrence state of the main impurities in Panxi ilmenite[J]. Iron Steel Vanadium Titanium, 2017, 38(4):63-68. doi: 10.7513/j.issn.1004-7638.2017.04.013 YE E D, WU X. Research of the occurrence state of the main impurities in Panxi ilmenite[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 63-68. doi: 10.7513/j.issn.1004-7638.2017.04.013 |
[4] | 吴本羡. 攀西地区钛铁矿的工艺特征[J]. 矿产综合利用, 1987(1):74-79. WU B X. Technological characteristics of ilmenite in Panzhihua-Xichang area[J]. Multipurpose Utilization of Minerals, 1987(1):74-79. WU B X. Technological characteristics of ilmenite in Panzhihua-Xichang area[J]. Comprehensive Utilization of Minerals, 1987 (1): 74-79. |
[5] | 曹玉川, 黄光耀, 刘星. -38 μm粒级钛铁矿高效回收试验研究[J]. 矿冶工程, 2012, 32(4):48-50. CAO Y C, HUANG G Y, LIU X. Study on high-efficiency recovery of ultrafine ilmenite( - 38 μm)[J]. Mining and Metallurgical Engineering, 2012, 32(4):48-50. doi: 10.3969/j.issn.0253-6099.2012.04.013 CAO Y C, HUANG G Y, LIU X. Study on high-efficiency recovery of ultrafine ilmenite( - 38 um)[J]. Mining and Metallurgical Engineering, 2012, 32(4): 48-50. doi: 10.3969/j.issn.0253-6099.2012.04.013 |
[6] | 谢泽君. 选钛厂细粒钛铁矿浮选探讨[J]. 攀钢技术, 1998(6):24-28. XIE Z J. Discussion on flotation of fine ilmenite from titanium separation plant[J]. Pangang Technology, 1998(6):24-28. XIE Z J. Discussion on flotation of fine ilmenite from titanium separation plant[J]. Pangang Technology, 1998(6): 24-28. |
[7] | 余家华, 刘洪贵. 国内外钛矿和富钛料生产现状及发展趋势[J]. 世界有色金属, 2003(6):4-8. YU J H, LIU H G. Status quo of production of titanium ores and concentrates at home and abroad and trend of development[J]. World Nonferrous Metals, 2003(6):4-8. YU J H, LIU H G. Status quo of production of titanium ores and concentrates at home and abroad and trend of development[J]. World Nonferrous Metals, 2003(6): 4-8. |
[8] | Chen L, Ren N, Xiong D. Experimental studyon performance of continuous centrifugal concentrator in reconcentrating fine hematite[J]. International Journal of Mineral Processing, 2008, 87(1/2):9-16. |
[9] | Xiong D. Research and commercialization of treatment of fine ilmenite. with Slon magnetic separators[J]. Magnetic and Elictrical Separation, 2000, 4(10):121-127. |
[10] | 张松, 杨波. 悬振锥面选矿机的工业应用现状[J]. 矿产综合利用, 2019(3):22-26. ZHANG S, YANG B. Industrial application status of hang and vibrate of cone concentrator[J]. Multipurpose Utilization of Mineral Resources, 2019(3):22-26. doi: 10.3969/j.issn.1000-6532.2019.03.005 ZHANG S, YANG B. Industrial application status of hang and vibrate of cone concentrator[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 22-26. doi: 10.3969/j.issn.1000-6532.2019.03.005 |
[11] | 闫艳军. 白云鄂博共伴生矿高梯度超导磁选预富集工艺研究[D]. 包头: 内蒙古科技大学, 2019. YAN Y J. Study on Preconcentration of Bayan Obo associated ore using high gradient superconducting magnetic separation [D]. Baotou: Inner Mongolia University of Science and Technology, 2019. |
Distribution characteristics and associative relationship of samples (optical microscope)
Color map of sample MLA analysis (SEM)
Flow chart of traditional flotation test
Flow chart of desliming pretreatment
Flow chart of centrifugal preenrichment test
Flow chart of preenrichment-flotation test
Flow chart of superconducting preenrichment test
Flow chart of high intensity magnetic preenrichment test
Flow chart of suspension vibration + preenrichment test
Comparison of separation indexes of four preenrichment processes
Comparison of four pre-enrichment + flotation process indexes