Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 2
Article Contents

Tan Shaosong, Ma Shuai, Fan Youqi, Zhu Jinxin, Chen Shiliang. Characteristics of Heavy Metal Dusts in the Copper Matte Smelting Process and Progress in Accerations Control Technology[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 150-158. doi: 10.3969/j.issn.1000-6532.2023.02.024
Citation: Tan Shaosong, Ma Shuai, Fan Youqi, Zhu Jinxin, Chen Shiliang. Characteristics of Heavy Metal Dusts in the Copper Matte Smelting Process and Progress in Accerations Control Technology[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 150-158. doi: 10.3969/j.issn.1000-6532.2023.02.024

Characteristics of Heavy Metal Dusts in the Copper Matte Smelting Process and Progress in Accerations Control Technology

More Information
  • As one of the core technologies for copper smelting, matte smelting produces high-temperature flue gas with high SO2 concentration during the smelting process, which carries a large amount of dusts containing Cu, Pb, Zn, As and other harmful heavy metals. In industry, with the change of temperature and atmosphere in different parts of the flue gas system, the properties of the flue gas will hange gradually, and it will be separated from the flue gas gradually under the action of gravity and static electric field. However, some dust adhesion at high temperatures to rise and waste heat boiler flue wall or on the heat exchange tube, forming solid accerations, result in the boiler in thermal efficiency is lower, the gas flow crossing section decreases and increasing the risk of a harmful dust pollution of heavy metals. Therefore, studying the characteristics of copper smelting and the bonding behavior, accerations development of control technology has become the focus of the industry. The paper intends to compare and analyze the dust and accerations substance physical characteristics in different stages of the flue gas treatment system in different copper smelting processes by sorting out existing research work, and conclude and analyze the laws of composition phase change and accerations substance formation mechanism. At the same time, the progress of accerations control technology in industry is compared and reviewed, and some suggestions are put forward.

  • 加载中
  • [1] 杨俊奎, 徐斌, 马永鹏, 等. 铜冶炼开路烟尘综合回收研究现状[J]. 矿产综合利用, 2019(5):9-16. YANG J K, XU B, MA Y P, et al. Research status of comprehensive recovery of open-circuit dusts in copper smelter[J]. Multipurpose Utilization of Mineral Resources, 2019(5):9-16. doi: 10.3969/j.issn.1000-6532.2019.05.003

    CrossRef Google Scholar

    [2] 吕旭龙, 衷水平, 印万忠, 等. 某铜冶炼企业冶炼炉渣配矿浮选试验研究[J]. 矿产综合利用, 2019(1):114-118. LV X L, ZHONG S P, YIN W Z, et al. Experimental study on flotation of different proportion smelter slag in a copper smelting enterprise[J]. Multipurpose Utilization of Mineral Resources, 2019(1):114-118. doi: 10.3969/j.issn.1000-6532.2019.01.025

    CrossRef Google Scholar

    [3] 余 彬, 张 鑫, 王礼珊. 铜冶炼急冷转炉渣与缓冷电炉渣混合浮选生产实践[J]. 矿产综合利用, 2019(1):127-129. YU B, ZHANG X, WANG L S. Production practice of the mixed flotation of the copper smelting quench slag and the slow-cooling electric slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):127-129. doi: 10.3969/j.issn.1000-6532.2019.01.028

    CrossRef Google Scholar

    [4] 李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的试验研究[J]. 矿产综合利用, 2020(2):145-150. LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    CrossRef Google Scholar

    [5] Samuelsson C. Controlled dust separation, Theoretical and experimental study of the possibilities of controlled dust separation in copper producing processes[D]. Luleå University of Technology, 1999.

    Google Scholar

    [6] Samuelsson C. Characterization of copper smelter dusts[J]. CIM Bulletin, 2005, 94(1051):111-115.

    Google Scholar

    [7] Kang Y C, Park S S. Making improvements in smelting capacity at Onsan copper smelter[J]. JOM, 1997, 49(10):44-46. doi: 10.1007/BF02914741

    CrossRef Google Scholar

    [8] 周俊, 陈卓, 周孑民. 闪速炼铜中烟尘的形成过程[J]. 有色金属(冶炼部分), 2020(2):1-8. ZHOU J, CHEN Z, ZHOU J M. Process of dust generation in copper flash smelting[J]. Nonferrous Metals(Extractive Metallurgy), 2020(2):1-8.

    Google Scholar

    [9] 张荣良, 丘克强, 谢永金, 等. 铜冶炼闪速炉烟尘氧化浸出与中和脱砷[J]. 中南大学学报(自然科学版), 2006, 37(1):73-78. ZHANG R L, QIU K Q, XIE Y J, et al. Treatment process of dust from flash smelting furnace at copper smelter by oxidative leaching and dearsenifying process from leaching solution[J]. Journal of Central South University(Science and Technology), 2006, 37(1):73-78.

    Google Scholar

    [10] Steinacker S, Antrekowitsch J. Thermodynamic considerations for primary copper flue dust[J]. Erzmetall, 2015, 68(6):328-335.

    Google Scholar

    [11] Samuelsson C, Bo Björkman. Dust forming mechanisms in the gas cleaning system after the copper converting[J]. Scandinavian Journal of Metallurgy, 1998, 27(2):64-72.

    Google Scholar

    [12] Miettinen E. Thermal conductivity and characteristics of copper flash smelting flue dust accretions[D]. Helsinki University of Technology, 2008.

    Google Scholar

    [13] Markova Ts, Boyanov B, Pironkov S, et al. Investigation of dusts from waste-heat boiler and electrostatic precipitators after flash smelting furnace for copper concentrates[J]. Journal of Mining and Metallurgy, 2000, 36(3-4):195-208.

    Google Scholar

    [14] Iliev P, Stefanova V, Shentov D, Thermodynamic analysis of the sulphatization processes taking place in a dust-gas flow from flash smelting furance[J]. Journal of Chemical Technology and Metallurgy, 2016, 51(3): 335-340.

    Google Scholar

    [15] Chen Y, Zhao Z, Taskinen P, et al. Characterization of copper smelting flue dusts from a bottom-blowing bath smelting furnace and a flash smelting furnace[J]. Metallurgical and Materials Transactions B, 2020(51):2596-2608.

    Google Scholar

    [16] 余齐汉, 刘海泉, 邱树华. 闪速熔炼排烟系统烟尘硫酸盐化技术的应用[J]. 有色冶金设计与研究, 2015, 36(2):22-26. YU Q H, LIU H Q, QIU S H. Application of dust sulfation technology of flash smelting flue gas exhaust system[J]. Nonferrous Metals Engineering & Research, 2015, 36(2):22-26. doi: 10.3969/j.issn.1004-4345.2015.02.007

    CrossRef Google Scholar

    [17] Swinbourne D R, Simak E, and Yazawa A. Accretion and dust formation in copper smelting-thermodynamic considerations[C]. // Sulfide Smelting . Seattle: TMS (The Minerals, Metals and Materials Society), 2002: 247-259.

    Google Scholar

    [18] 郭引刚, 韩战旗, 王伯义, 等. 铜闪速吹炼烟道口结焦原因分析及控制实践[J]. 中国有色冶金, 2018, 47(5):27-28,33. GUO Y G, HAN Z Q, WANG B Y, et al. Causal analysis of coking at flue hole in copper flash smelting process and its control practice[J]. China Nonferrous Metallurgy, 2018, 47(5):27-28,33. doi: 10.3969/j.issn.1672-6103.2018.05.008

    CrossRef Google Scholar

    [19] Kurosawa T, Yagishi T, Togo K, et al. On the several problems of dust in the copper dmelting[J]. Transactions of National Rresearch Institute for Metals, 1973, 15(3):34-44.

    Google Scholar

    [20] Kim J Y, Lajoie S, Godbehere P. Characterization of copper smelter dusts and its effect on metal recovery[C]. //Waste Processing and Recycling in Mineral and Metallurgical Industries II, Vancouver, Canada: CIM, 1995: 221-234.

    Google Scholar

    [21] Yang Y. Computer simulation of gas flow and heat transfer in waste-heat boilers of the outokumpu copper flash smelting process[J]. Acta Polytechnica Scandinavica Chemical Technology. 1996, 38(242): 1-135.

    Google Scholar

    [22] Balladares E, Kelm U, Helle S, et al. Chemical mineralogical characterization of copper smelting flue dust[J]. Dyan, 2014, 81(186):11-18.

    Google Scholar

    [23] Morales A, Cruells M, Roca A, et al. Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization[J]. Hydrometallurgy, 2010, 105(1-2):148-154. doi: 10.1016/j.hydromet.2010.09.001

    CrossRef Google Scholar

    [24] Fernández-Caliani J C, Moreno-Ventas I, et al. Mineral chemistry and phase equilibrium constraints on the origin of accretions formed during copper flash smelting[C]. Minerals & Metallurgical Processing, 2017, 34(1): 36-43.

    Google Scholar

    [25] Stefanova V, Shentov D, Mihailova I, et al. Investigation of the phase composition of accretions formed into WHB under flash smelting of copper concentrate[J]. Russian Journal of Non-ferrous Metals, 2012, 53(1):26-32. doi: 10.3103/S106782121201021X

    CrossRef Google Scholar

    [26] Evans J P, Mackey P J, Scott J D. Impact of gas cooling techniques on smelter dust segregation[C]. // Smelter process gas handling and treatment. Warrendale, PA: TMS, 1991: 189-214.

    Google Scholar

    [27] 罗绍宏, 谭湘庭. 铜精矿熔炼炉烟道结瘤机理探讨[J]. 有色金属(冶炼部分), 1980(4):18-23. LUO S H, TAN X T. Discussion on the mechanism of nodulation in the flue of copper concentrate smelting furnace[J]. Nonferrous Metals(Extractive Metallurgy), 1980(4):18-23.

    Google Scholar

    [28] 张泽发. 结焦抑制剂在铜冶炼中的应用[C]// 中国有色金属学会, 首届全国红土镍矿冶炼技术研讨会, 浙江, 2012: 153-156.

    Google Scholar

    ZHANG Z F. Application of coking inhibitor in copper smelting[C]// Chinese Society of Nonferrous Metals, The First National Laterite Nickel Smelting Technology Symposium, Zhejiang, 2012: 153-156.

    Google Scholar

    [29] Hidayat T, Henao H M, Hayes P C, et al. Phase equilibria studies of the Cu-Fe-O-Si system in equilibrium with air and with metallic copper[J]. Metallurgical & Materials Transactions B, 2012, 43(5):1034-1045.

    Google Scholar

    [30] 郑春到, 林东和. 闪速熔炼系统 As、Sb、Bi、Pb 的走向分布[J]. 中国有色冶金, 2015, 44(3):15-18. ZHENG C D, LIN D H. As, Sb, Bi, Pb flow direction and distribution in flash smelting system[J]. China Nonferrous Metallurgy, 2015, 44(3):15-18. doi: 10.3969/j.issn.1672-6103.2015.03.005

    CrossRef Google Scholar

    [31] 王智, 郭学益, 王海滨, 等. 多元炉上升烟道结焦的分析与讨论[J]. 资源再生, 2018, 196(11):50-52. WANG Z, GUO X Y, WANG H B, et al. Analysis and discussion about accretion in the uptake of SLS[J]. Resource Recycling, 2018, 196(11):50-52. doi: 10.3969/j.issn.1673-7776.2018.11.016

    CrossRef Google Scholar

    [32] 甘聪. 闪速熔炼炉排烟系统粘结影响因素分析及控制措施[J]. 中国有色冶金, 2019(2):45-48. GAN C. Analysis and control measures of affecting factors on the caking in fume exhaust of flash furnace[J]. China Nonferrous Metallurgy, 2019(2):45-48. doi: 10.3969/j.issn.1672-6103.2019.06.012

    CrossRef Google Scholar

    [33] 马永明. 铜冶炼烟尘工艺及其性质分析控制[J]. 中小企业管理与科技, 2019(29):137-138. MA Y M. Analysis and control of copper smelting soot process and its properties[J]. Management & Technology of SME, 2019(29):137-138.

    Google Scholar

    [34] 陈汉春. 闪速熔炼的现状与进展[J]. 中国有色冶金, 1997, 26(2):l-7. CHEN H C. Present situation and development of flash smelting[J]. China Nonferrous Metallurgy, 1997, 26(2):l-7.

    Google Scholar

    [35] 冯治兵, 潘小龙. “白银炼铜法”双侧吹富氧熔池熔炼工艺发展综述[J]. 世界有色金属, 2018(11):1-3. FENG Z B, PAN X L. "Baiyin copper smelting" oxygen enrichment molten pool melting process development[J]. World Nonferrous Metals, 2018(11):1-3. doi: 10.3969/j.issn.1002-5065.2018.11.001

    CrossRef Google Scholar

    [36] 骆时雨. 降低闪速炉烟灰发生率[J]. 铜业工程, 2018(4):41-44. LUO S Y. Reduce the occurrence rate of flash furnace soot[J]. Copper Engineering, 2018(4):41-44. doi: 10.3969/j.issn.1009-3842.2018.04.011

    CrossRef Google Scholar

    [37] 吴建华. 奥托昆普型闪速炉上升烟道粘结处理实践[J]. 湖南有色金属, 2017, 33(4):33-35. WU J H. Practice of upward flue bonding treatment of outokumpu type flash furnace[J]. Hunan Nonferrous Metals, 2017, 33(4):33-35. doi: 10.3969/j.issn.1003-5540.2017.04.010

    CrossRef Google Scholar

    [38] 张鑫, 惠兴欢, 朱江, 等. 控制艾萨炉余热锅炉过渡段结渣的生产实践[J]. 中国有色冶金, 2013, 42(3):12-14,18. ZHANG X, HUI X H, ZHU J, et al. Production practice of controlling slagging in transition section of heat recovery steam generator of ISA furnace[J]. China Nonferrous Metallurgy, 2013, 42(3):12-14,18. doi: 10.3969/j.issn.1672-6103.2013.03.003

    CrossRef Google Scholar

    [39] 周俊. 闪速炉废热锅炉结灰与SO3发生的原因分析[J]. 有色金属(冶炼部分), 2003(1):17-20. ZHOU J. Analysis on dust accretion and SO3 formation in flash smelting furnace waste heat boiler[J]. Nonferrous Metals(Extractive Metallurgy), 2003(1):17-20.

    Google Scholar

    [40] Maeda Y, Inoue H , Hoshikawa Y, et al. Current operation in kosaka smelter [C]. // Sulfide smelting: current and future practices . U. S. A. : TMS , 1998: 305.

    Google Scholar

    [41] 刘贤龙, 姜志雄, 赵祥林, 等. 降低澳斯麦特炉系统烟道结焦的生产实践[J]. 有色冶金节能, 2018(34), 190(3): 13-17.

    Google Scholar

    LIU X L, JIANG Z X, ZHAO X L, et al. Production practice of reducing uptake flue coking of ausmelt furnace system[J]. Energy Saving of Non-ferrous Metallurgy, 2018(34), 190(3): 13-17.

    Google Scholar

    [42] 张尧, 李坎. 余热锅炉振打清灰装置的设计[J]. 余热锅炉, 2013(2):17-19. ZHANG Y, LI K. The design of the vibrating ash removal device of the waste heat boiler[J]. Waste Heat Boiler, 2013(2):17-19.

    Google Scholar

    [43] 唐信来, 雷玲, 孙向阳, 等. 高温闪速炉炉结爆破拆除[J]. 爆破, 2008, 25(4):77-78. TANG X L, LEI L, SUN X Y, et al. High-temperature furnace guitar flash blasting[J]. Blasting, 2008, 25(4):77-78. doi: 10.3963/j.issn.1001-487X.2008.04.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(1606) PDF downloads(453) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint