Citation: | Li Cong, Zhang Rongliang, Zeng Jia, Lu Qinyao, Zhou Linkai, Zhang Wei. Study on Low-Temperature Vacuum Carbothermal Reduction of High-arsenic Copper Dust in Copper Fire Refining Furnace for Arsenic Removal[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(6): 167-173. doi: 10.3969/j.issn.1000-6532.2022.06.028 |
Using the high arsenic copper dust from the copper fire refining furnace as the raw material, the low-temperature vacuum carbothermic reduction method is used to remove As from the dust. Differential thermal analysis of the raw materials was carried out by TGA-DSC, and the phase, chemical composition and morphology of the dust and evaporation residue were analyzed by XRD, ICP, SEM and other analytical methods. On the basis of thermodynamic analysis, the effect of evaporation temperature, residual pressure, reducing dose, evaporation time, etc. on the removal rate of As and other valuable metals. The results show that when the evaporation temperature is 350℃, the residual pressure is 100 Pa, the reducing amount is 25%, and the evaporation time is 50 min, the removal rate of As can reach 81.63% while ensuring that other metals do not evaporate basically, realizing As Selective separation of other valuable metals. The evaporate is As2O3 with higher purity, which can be used as primary As2O3 product. Valuable metals are enriched in the evaporation residue, which is convenient for the subsequent recovery of the waste acid leaching process.
[1] | 杨俊奎, 徐斌, 马永鹏. 铜冶炼开路烟尘综合回收研究现状[J]. 矿产综合利用, 2019(5):9-16. YANG J K, XU B, MA Y P. Research status of comprehensive recovery of open-circuit smoke and dust from copper smelting[J]. Multipurpose Utilization of Mineral Resources, 2019(5):9-16. |
[2] | 周俊, 陈卓, 周孑民. 闪速炼铜中烟尘的形成过程[J]. 有色金属(冶炼部分), 2020(2):1-8. ZHOU J, CHEN Z, ZHOU J M. The formation process of soot in flash smelting of copper[J]. Nonferrous Metals (Extractive Metallurgy), 2020(2):1-8. |
[3] | 吴星琳, 罗仁昆, 李涛, 等. 铜冶炼烟尘碱浸除砷试验研究[J]. 湿法冶金, 2019, 38,(6):488-493. WU X L, LUO R K, LI T, et al. Experimental research on alkaline leaching of arsenic in copper smelting fume[J]. Hydrometallurgy, 2019, 38,(6):488-493. |
[4] | 黄家全, 马永鹏, 徐斌, 等. 铜冶炼白烟尘综合回收研究[J]. 有色金属(冶炼部分), 2020(3):17-22. HUANG J Q, MA Y P, XU B, et al. Research on comprehensive recovery of white smoke from copper smelting[J]. Nonferrous Metals (Extractive Metallurgy), 2020(3):17-22. |
[5] | 高洋. 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019(1):6-10. doi: 10.3969/j.issn.1000-6532.2019.01.002 GAO Y. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10. doi: 10.3969/j.issn.1000-6532.2019.01.002 |
[6] | 马永明. 铜冶炼烟尘工艺及其性质分析控制[J]. 中小企业管理与科技, 2019(10):137-138. MA Y M. Copper smelting smoke and dust process and its properties analysis and control[J]. Small and Medium Enterprise Management and Technology, 2019(10):137-138. |
[7] | 史腾腾. 含砷铜烟尘真空脱砷的研究[D]. 昆明: 昆明理工大学, 2019. SHI T T. Research on vacuum removal of arsenic from copper dust containing arsenic[D]. Kunming: Kunming University of Science and Technology, 2019. |
[8] | 李晓恒, 田静, 陈俊华, 等. 金铜冶炼高砷烟尘酸浸工艺研究[J]. 中国有色冶金, 2019, 48(2):73-75. LI X H, TIAN J, CHEN J H, et al. Study on acid leaching process of high arsenic fume from gold and copper smelting[J]. China Nonferrous Metallurgy, 2019, 48(2):73-75. |
[9] | 郑天新, 梁精龙, 李慧, 等. 铁酸锌的应用现状及制备工艺[J]. 矿产综合利用, 2019(4):11-15. doi: 10.3969/j.issn.1000-6532.2019.04.002 ZHEN T X, LIANG J L, LI H, et al. Application status and preparation process of zinc ferrite[J]. Multipurpose Utilization of Mineral Resources, 2019(4):11-15. doi: 10.3969/j.issn.1000-6532.2019.04.002 |
[10] | 徐宝强, 史腾腾, 杨斌, 等. 含砷烟尘的处理及利用研究现状[J]. 昆明理工大学学报(自然科学版), 2019, 44(1):1-11. XU B Q, SHI T T, YANG B, et al. Research status of treatment and utilization of arsenic-containing smoke and dust[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2019, 44(1):1-11. |
[11] | 张喆秋, 袁露成, 黄林青, 等. 砷、锑、铋在铜冶炼过程中的分布及其在冶炼副产物中的回收综述[J]. 有色金属科学与工程, 2019, 10(1):13-19+27. ZHANG Z Q, YUAN L C, HUANG L Q, et al. The distribution of arsenic, antimony and bismuth in the copper smelting process and its recovery in the by-products of smelting[J]. Nonferrous Metal Science and Engineering, 2019, 10(1):13-19+27. |
[12] | 李学鹏, 刘大春, 王娟. 含砷铜烟尘砷的选择性分离试验[J]. 材料学报, 2018, 32(18):3110-3115. LI X P, LIU D C, WANG J. Selective separation test of arsenic in copper fume containing arsenic[J]. Acta Materials and Materials, 2018, 32(18):3110-3115. |
[13] | Jintao Gao, Zili Huang, Zengwu Wang, et al. Recovery of crown zinc and metallic copper from copper smelter dust by evaporation, condensation and super-gravity separation[J]. Separation and Purification Technology, 2020:231. |
[14] | Anton Kovyazin, Konstantin L Timofeev, Sergey Krauhin. Copper smelting fine dust autoclave leaching[J]. Materials Science Forum, 2019, 946:615-620. doi: 10.4028/www.scientific.net/MSF.946.615 |
[15] | Tianzu Yang, Xinxin Fu, Weifeng Liu, et al. Hydrometallurgical treatment of copper smelting dust by oxidation leaching and fractional precipitation technology[J]. JOM, 2017, 69(10):1982-1986. doi: 10.1007/s11837-017-2492-6 |
[16] | 叶大伦, 胡建华. 实用无机物热力学数据手册. 2版[M]. 北京: 冶金工业出版社, 2002: 89-780. YE D L, HU J H. Practical inorganic thermodynamic data handbook 2nd edition[M]. Beijing: Metallurgical Industry Press, 2002: 89-780. |
XRD phase analysis of the high arsenic copper dust from copper fire refining furnace
Relationship between △G and temperature in possible reactions during the reducing experiment
Thermogravimetric analysis of copper dust containing As
Effect of evaporation temperature on the removal rate of As
Effect of residual pressure on the evaporation rate of As
Effect of evaporation time on the evaporation rate of As
Effect of the reducing dose on the evaporation rate of As
XRD composition analysis of As2O3
XRD composition analysis of residue
SEM micrographs of As2O3
EDS micrographs of As2O3