Citation: | Zhou Lanhua, Zeng Fuhong, Gong Yongmin. Optimization of Separating Iron and Zinc from BF Gas Sludge by BBD Method[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 31-36. doi: 10.3969/j.issn.1000-6532.2022.05.006 |
In order to optimize the thermal parameters of BF gas sludge and realize the good separation of iron and zinc from the sludge, the single factor experiment of heating self reduction of the sludge pellet and that of factor optimization design by BBD (Box-Behnken Design) method in response surface were carried aiming at the problem difficult to separate and recover iron and zinc from the sludge. The metallization rate of iron and that of zinc are used as the evaluation index for the separation of iron and zinc. The results show that the influence of thermal parameters on the reduction and separation of iron and zinc oxides are time > temperature > pelleting pressure; the optimized conditions are1299.95℃, 47.05 min and 8 MPa of pelleting pressure. It is obtained by the optimization test of thermal parameters designed by BBD method that the metallization of iron and zinc reach to 94.67% and 96.08%, respectively, and iron is mainly retained in pellets in the form of metallic iron and Zinc enters into the dust as a gaseous element zinc and then oxidized to ZnO dust. Good separation of iron and zinc is achieved.
[1] | 徐刚. 高炉粉尘再资源化应用基础研究[D]. 北京: 北京科技大学, 2015. XU G. Basic research on the application of blast furnace dust recycling [D]. Beijing: University of Science and Technology Beijing, 2015. |
[2] | 黄平, 张远. 氨性体系处理高炉瓦斯泥浸出锌试验研究[J]. 钢铁钒钛, 2018, 39(4):99-103. doi: 10.7513/j.issn.1004-7638.2018.04.017 HUANG P, ZHANG Y. Experimental study on leaching zinc from blast furnace gas mud treated by ammonia system[J]. Iron and Steel Vanadium and Titanium, 2018, 39(4):99-103. doi: 10.7513/j.issn.1004-7638.2018.04.017 |
[3] | 杨大兵, 陈萱. 从高炉除尘灰中综合回收碳、铁和锌的试验研究[J]. 武汉科技大学学报(自然科学版), 2012, 35(5):352-355. YANG D B, CHEN X. Experimental study on comprehensive recovery of carbon, iron and zinc from blast furnace dust[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2012, 35(5):352-355. |
[4] | 刘淑芬, 杨声海, 陈永明, 等. 从高炉瓦斯泥中湿法回收锌的新工艺(Ⅰ): 废酸浸出及中和除铁[J]. 湿法冶金, 2012, 31(2):110-114. doi: 10.3969/j.issn.1009-2617.2012.02.012 LIU S F, YANG S H, CHEN Y M, et al. New technology for wet recovery of zinc from blast furnace gas mud (Ⅰ): Spent acid leaching and neutralization of iron removal[J]. Hydrometallurgy, 2012, 31(2):110-114. doi: 10.3969/j.issn.1009-2617.2012.02.012 |
[5] | 毛磊, 杨宝滋, 朱小涛, 等. 从瓦斯灰中碱浸锌及其动力学研究[J]. 湿法冶金, 2014(6):429-432. doi: 10.13355/j.cnki.sfyj.2014.06.04 MAO L, YANG B Z, ZHU X T, et al. Alkaline zinc leaching from gas ash and its kinetics research[J]. Hydrometallurgy, 2014(6):429-432. doi: 10.13355/j.cnki.sfyj.2014.06.04 |
[6] | 郭江, 李荣, 牛海云. 氧化亚铁和碱度对高炉渣皮稳定性影响试验研究[J]. 矿产综合利用, 2019(2):94-97. doi: 10.3969/j.issn.1000-6532.2019.02.019 GUO J, LI R, NIU H Y. Experimental research on the stability of blast furnace slag skull by ferrous oxide and basicity[J]. Multipurpose Utilization of Mineral Resources, 2019(2):94-97. doi: 10.3969/j.issn.1000-6532.2019.02.019 |
[7] | 徐刚, 吴华峰, 李士琦, 等. 高炉瓦斯泥精细还原实验研究[J]. 工业加热, 2014, 43(2):22-24. doi: 10.3969/j.issn.1002-1639.2014.02.007 XU G, WU H F, LI S Q, et al. Experimental study on fine reduction of blast furnace gas mud[J]. Industrial Heating, 2014, 43(2):22-24. doi: 10.3969/j.issn.1002-1639.2014.02.007 |
[8] | 徐春阳, 周军民, 徐文婧. 回转窑处理高炉瓦斯灰的生产试验和分析[J]. 中国冶金, 2015, 25(11):61-66. doi: 10.13228/j.boyuan.issn1006-9356.20140375 XU C Y, ZHOU J M, XU W J. Production test and analysis of rotary kiln treating blast furnace gas ash[J]. China Metallurgy, 2015, 25(11):61-66. doi: 10.13228/j.boyuan.issn1006-9356.20140375 |
[9] | İlkay Turhan Kara, Sevil Yücel, Muhammet Arıcı. Optimization aging parameters of Mg silica aerogel using box-behnken approach[J]. Journal of Nano Research, 2020, 62:31-46. doi: 10.4028/www.scientific.net/JNanoR.62.31 |
Self-reducing balanced components of BF gas sludge
Relationship between metallization of iron and pelleting pressure at 1200℃ and 40 min
Relationship between metallization of zinc and pelleting pressure at 1200℃ and 40 min
Metallization of iron at 8 MPa of pelleting pressure
Metallization of zinc at 8 MPa of pelleting pressure
XRD analysis of reduced pellets
XRD analysis of reduced volatiles