Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 3
Article Contents

Wang Gang, Yu Yunlong, Ma Bo, Wang Qian, Cao Huan. Study on Mineral Processing Technology of Complex Polymetallic Lead-Copper-Zinc Sulfide Ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031
Citation: Wang Gang, Yu Yunlong, Ma Bo, Wang Qian, Cao Huan. Study on Mineral Processing Technology of Complex Polymetallic Lead-Copper-Zinc Sulfide Ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031

Study on Mineral Processing Technology of Complex Polymetallic Lead-Copper-Zinc Sulfide Ores from Inner Mongolia

  • Mineral processing technology and technological mineralogy were studied complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia. Findings show that the valuable elements in the ore are Cu, Pb, Zn and Ag, and the copper, lead and zinc minerals are metasomatized and wrapped each other, among which galena and chalcopyrite are wrapped, and the particle size of the wrapped galena is not uniform. Galena and sphalerite are mostly in continuous relationship, and the contact surface between them is smooth and straight, which is easy to separate. The silver mineral is associated with these metal minerals, so the ores was used by the technological process of mixed flotation of copper and lead, separation of copper and lead and zinc flotation from tailings. Finally, a total of 3 concentrate products were obtained. In the copper concentrate, the average grades of Cu and Ag were 18.41% and 594.82 g/t with 86.53% and 25.30% recovery rates. In the lead concentrate, the average grades of Pb and Ag were 62.70% and 428.05 g/t with 85.01% and 54.62% recovery rates. In the zinc concentrate, the average grades of Zn and Ag were 28.12% and 165.75 g/t with 59.99% and 4.80% recovery rates; The total recovery of silver reached 84.72%, which realized the comprehensive recovery of valuable elements in ore.

  • 加载中
  • [1] 逄文好, 刘全军, 丁鹏. 新疆铜锌硫混合精矿分离试验研究[J]. 矿冶, 2014, 23(5):27-30. doi: 10.3969/j.issn.1005-7854.2014.05.008

    CrossRef Google Scholar

    PANG W H, LIU Q J, DING P. Experimental research on separation of Xinjiang copper, zinc and sulfur mixed concentrate[J]. Mining and Metallurgy, 2014, 23(5):27-30. doi: 10.3969/j.issn.1005-7854.2014.05.008

    CrossRef Google Scholar

    [2] 肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    CrossRef Google Scholar

    XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    CrossRef Google Scholar

    [3] 毕克俊, 方建军, 张琳, 等. 云南某低品位铅锌硫化矿选矿工艺[J]. 过程工程学报, 2016, 16(1):99-104. doi: 10.12034/j.issn.1009-606X.215342

    CrossRef Google Scholar

    BI K J, FANG J J, ZHANG L, et al. Beneficiation process of a low-grade lead-zinc sulfide ore in Yunnan[J]. The Chinese Journal of Process Engineering, 2016, 16(1):99-104. doi: 10.12034/j.issn.1009-606X.215342

    CrossRef Google Scholar

    [4] 黎维中. 难处理铅锌银硫化矿物资源综合回收的研究与实践[D]. 长沙: 中南大学, 2007.

    Google Scholar

    LI W Z. Research and practice on comprehensive recovery of refractory lead-zinc-silver sulfide mineral resources[D]. Changsha: Central South University, 2007.

    Google Scholar

    [5] 王衡嵩, 魏志聪, 曾明, 等. 铜锌矿物分离中闪锌矿抑制剂的作用机理研究进展[J]. 矿产保护与利用, 2019, 39(2):124-130.

    Google Scholar

    WANG H S, WEI Z C, ZENG M, et al. Research progress on the action mechanism of sphalerite inhibitors in the separation of copper-zinc minerals[J]. Mineral Resources Conservation and Utilization, 2019, 39(2):124-130.

    Google Scholar

    [6] 尧章伟, 方建军, 代宗, 等. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿冶, 2018, 27(4):16-21. doi: 10.3969/j.issn.1005-7854.2018.04.004

    CrossRef Google Scholar

    YAO Z W, FANG J J, DAI Z, et al. The mechanism and research progress of zinc blende inhibitor[J]. Mining and Metallurgy, 2018, 27(4):16-21. doi: 10.3969/j.issn.1005-7854.2018.04.004

    CrossRef Google Scholar

    [7] 苏建芳. 异极性巯基浮选捕收剂在方铅矿表面的吸附行为及机理研究[D]. 长沙: 中南大学, 2012.

    Google Scholar

    SU J F. Study on the adsorption behavior and mechanism of heteropolar sulfhydryl flotation collectors on galena surface [D]. Changsha: Central South University, 2012.

    Google Scholar

    [8] 曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12):1589-1594.

    Google Scholar

    CAO F, SUN C Y, WANG H J, et al. The influence of hydrocarbon-based structure on the flotation performance of xanthate collector[J]. Journal of University of Science and Technology Beijing, 2014, 36(12):1589-1594.

    Google Scholar

    [9] 管晓颖. 铜钼矿浮选分离多因素交互影响研究[D]. 北京: 北京有色金属研究总院, 2016.

    Google Scholar

    GUAN X Y. Study on the interaction of multiple factors in the flotation separation of copper-molybdenum ore[D]. Beijing: Beijing Research Institute of Nonferrous Metals, 2016.

    Google Scholar

    [10] 曾慰华, 姚亚萍, 奚长生, 等. 某难选铜铅混合精矿的分离试验研究[J]. 金属矿山, 2006(4): 19-22

    Google Scholar

    ZENG W H, YAO Y P, XI C S, et al. Separation test study of a hard-to-select copper-lead mixed concentrate [J]. Metal Mine, 2006(4): 19-22

    Google Scholar

    [11] 米丽平, 孙春宝, 李青, 等. 用组合抑制剂实现铜铅高效分离的试验研究[J]. 金属矿山, 2009, 39(8):53-56. doi: 10.3321/j.issn:1001-1250.2009.08.015

    CrossRef Google Scholar

    MI L P, SUN C B, LI Q, et al. Experimental study on high-efficiency separation of copper and lead with combined inhibitors[J]. Metal Mine, 2009, 39(8):53-56. doi: 10.3321/j.issn:1001-1250.2009.08.015

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(8)

Article Metrics

Article views(834) PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint