Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 3
Article Contents

Liu Jinrui, Li Hui, Liang Jinglong, Wang Le. Progress on Extraction of Valuable Metals Elements from Red Mud[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 107-112. doi: 10.3969/j.issn.1000-6532.2022.03.019
Citation: Liu Jinrui, Li Hui, Liang Jinglong, Wang Le. Progress on Extraction of Valuable Metals Elements from Red Mud[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 107-112. doi: 10.3969/j.issn.1000-6532.2022.03.019

Progress on Extraction of Valuable Metals Elements from Red Mud

More Information
  • As a kind of alkaline waste produced in the alumina production process, red mud has a high annual output, large stockpiles, and low utilization rate in this country, which poses a huge threat to the resources and environment. Extracting a large amount of valuable metal elements contained in red mud is of great significance for realizing the resource utilization of red mud. This article briefly describes the nature and composition of red mud. Research status and existing problems of extraction of valuable metal elements from red mud such as the direct magnetic separation, reduction-magnetic separation and wet processes of Fe, the reduction sintering method, calcification-carbonation method, acid leaching method and sub-molten salt extraction process of Al, fire and wet extraction process of Ti; and the combined fire-wet and wet extraction process of Sc were reviewed. TIt is believed that the current challenge for industrialized recovery of valuable metals in red mud lies in the complex composition of red mud, which leads to the technical difficulty and processing cost of valuable metal recovery, and the lack of process research on the systematic recovery of multiple elements. It is proposed that the development of more efficient technologies for the recovery of valuable metals and the strengthening of relevant research on the systematic extraction of multiple valuable metals from red mud are the keys to the realization of red mud resource utilization in the future.

  • 加载中
  • [1] 朱晓波, 李望, 管学茂. 赤泥综合利用研究现状及分析[J]. 矿产综合利用, 2016(1):7-10. doi: 10.3969/j.issn.1000-6532.2016.01.002

    CrossRef Google Scholar

    ZHU X B, LI W, GUAN X M. Research status and analysis of comprehensive utilization of mud[J]. Multipurpose Utilization of Mineral Resources, 2016(1):7-10. doi: 10.3969/j.issn.1000-6532.2016.01.002

    CrossRef Google Scholar

    [2] POWER G, GRAFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1):33-45.

    Google Scholar

    [3] 国家发展和改革委员会. 中国资源综合利用年度报告(2014)[J]. 再生资源与循环经济, 2014, 7(10):3-8. doi: 10.3969/j.issn.1674-0912.2014.10.003

    CrossRef Google Scholar

    National Development and Reform Commission. Annual report on comprehensive utilization of resources in China (2014)[J]. Renewable Resources and Circular Economy, 2014, 7(10):3-8. doi: 10.3969/j.issn.1674-0912.2014.10.003

    CrossRef Google Scholar

    [4] 薛生国, 李玉冰, 郭颖. 氧化铝工业赤泥环境影响研究进展[J]. 中国科学院大学学报, 2017, 34(4):401-412. doi: 10.7523/j.issn.2095-6134.2017.04.001

    CrossRef Google Scholar

    XUE S G, LI Y B, GUO Y. Research progress on environmental impact of red mud in alumina industry[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(4):401-412. doi: 10.7523/j.issn.2095-6134.2017.04.001

    CrossRef Google Scholar

    [5] 廖仕臻, 杨金林, 马少健. 赤泥综合利用研究进展[J]. 矿产保护与利用, 2019(3):21-27.

    Google Scholar

    LIAO S Z, YANG J L, MA S J. Research progress on the comprehensive utilization of red mud[J]. Mineral Resources Conservation and Utilization, 2019(3):21-27.

    Google Scholar

    [6] LIU Y, NAIDU R. Hidden values in bauxite residue (red mud): recovery of metals[J]. Waste Management, 2014, 34(12):2662-2673. doi: 10.1016/j.wasman.2014.09.003

    CrossRef Google Scholar

    [7] LIU Z, LI H. Metallurgical process for valuable elements recovery from red mud—A review[J]. Hydrometallurgy, 2015, 155:29-43. doi: 10.1016/j.hydromet.2015.03.018

    CrossRef Google Scholar

    [8] REDDY P S, NARALA G R, SERJUN V Z, et al. Properties and assessment of applications of red mud (bauxite residue): current status and research needs[J]. Waste Biomass Valorization, 2020:1-33.

    Google Scholar

    [9] CHEN S, FANG L, ZHU Q, et al. Bromate removal by Fe(II)–akaganeite (β-FeOOH) modified red mud granule material[J]. Rsc Advances, 2016, 6(34):28257-28262. doi: 10.1039/C6RA01206J

    CrossRef Google Scholar

    [10] 南相莉, 张廷安, 刘燕, 等. 我国主要赤泥种类及其对环境的影响[J]. 过程工程学报, 2009, 9(s1):459-464.

    Google Scholar

    NAN X L, ZHANG T A, LIU Y, et al. Main types of red mud in my country and their impact on the environment[J]. The Chinese Journal of Process Engineering, 2009, 9(s1):459-464.

    Google Scholar

    [11] MUKIZA E, ZHANG L, LIU X, et al. Utilization of red mud in road base and subgrade materials: A review[J]. Resources Conservation Recycling, 2019, 141:187-199. doi: 10.1016/j.resconrec.2018.10.031

    CrossRef Google Scholar

    [12] 竹涛, 王若男, 金鑫睿, 等. 以废治废——铝厂固废赤泥治理工业废气二氧化硫的应用研究[J]. 有色金属工程, 2019, 9(7):109-114. doi: 10.3969/j.issn.2095-1744.2019.07.017

    CrossRef Google Scholar

    ZHU T, WANG R N, JIN X R, et al. Treating waste with waste——application research on treatment of industrial waste gas sulfur dioxide with solid waste red mud in aluminumplants[J]. Nonferrous Metal Engineering, 2019, 9(7):109-114. doi: 10.3969/j.issn.2095-1744.2019.07.017

    CrossRef Google Scholar

    [13] KLAUBER C, GRÄFE M, POWER G. Bauxite residue issues: II. options for residue utilization[J]. Hydrometallurgy, 2011, 108(1-2):11-32. doi: 10.1016/j.hydromet.2011.02.007

    CrossRef Google Scholar

    [14] 徐淑安, 邵延海, 熊述清, 等. 疏水团聚-磁种法回收赤泥中微细粒铁矿试验[J]. 矿产综合利用, 2015(6):67-71. doi: 10.3969/j.issn.1000-6532.2015.06.017

    CrossRef Google Scholar

    XU S A, SHAO Y H, XIONG S Q, et al. Hydrophobic agglomeration-magnetic seed method to recover fine-grained iron ore from red mud[J]. Multipurpose Utilization of Mineral Resources, 2015(6):67-71. doi: 10.3969/j.issn.1000-6532.2015.06.017

    CrossRef Google Scholar

    [15] 邓琦, 张冬梅. 永磁法赤泥选铁的试验研究[J]. 陶瓷学报, 2012, 33(3):365-371. doi: 10.3969/j.issn.1000-2278.2012.03.021

    CrossRef Google Scholar

    DENG Q, ZHANG D M. Experimental research on iron separation from red mud by permanent magnet method[J]. Acta Ceramica Sinica, 2012, 33(3):365-371. doi: 10.3969/j.issn.1000-2278.2012.03.021

    CrossRef Google Scholar

    [16] 崔石岩, 张明慧, 孙永峰, 等. 高炉灰与赤泥共还原—磁选回收铁试验研究[J]. 金属矿山, 2020(3):102-107.

    Google Scholar

    CUI S Y, ZHANG M H, SUN Y F, et al. Co-reduction of blast furnace ash and red mud-experimental research on iron recovery by magnetic separation[J]. Metal Mine, 2020(3):102-107.

    Google Scholar

    [17] LI G, LIU M, RAO M, et al. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts[J]. Journal of Hazardous Materials, 2014, 280:774-780. doi: 10.1016/j.jhazmat.2014.09.005

    CrossRef Google Scholar

    [18] GAO F, ZHANG J, DENG X, et al. Comprehensive recovery of iron and aluminum from ordinary Bayer red mud by reductive sintering–magnetic separation–digesting process[J]. Jom, 2019, 71:2936-2943. doi: 10.1007/s11837-018-3311-4

    CrossRef Google Scholar

    [19] DAS D, PRAMANIK K. A study on chemical leaching of iron from red mud using sulphuric acid[J]. Research Journal of Chemistry Environment, 2013, 17(7):50-56.

    Google Scholar

    [20] PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud: recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99:8-18. doi: 10.1016/j.mineng.2016.09.012

    CrossRef Google Scholar

    [21] HUANG Y, HAN G, LIU J, et al. A facile disposal of Bayer red mud based on selective flocculation desliming with organic humics[J]. Journal of Hazardous Materials, 2016, 301:46-55. doi: 10.1016/j.jhazmat.2015.08.035

    CrossRef Google Scholar

    [22] XIAO-BIN L I, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5):1342-1347. doi: 10.1016/S1003-6326(08)60447-1

    CrossRef Google Scholar

    [23] 王璐, 郝彦忠, 郝增发. 赤泥中有价金属提取与综合利用进展[J]. 中国有色金属学报, 2018(8):1697-1710.

    Google Scholar

    WANG L, HAO Y Z, HAO Z F. Progress in extraction and comprehensive utilization of valuable metals in red mud[J]. The Chinese Journal of Nonferrous Metals, 2018(8):1697-1710.

    Google Scholar

    [24] 张廷安, 吕国志, 刘燕, 等. 基于钙化-碳化转型溶出中低品位铝土矿中氧化铝的方法: 中国, CN102757073B[P/OL]. 2014-06-18

    Google Scholar

    ZHANG T A, LV G Z, LIU Y, et al. Method for dissolving alumina from low- and medium-grade bauxite based on calcification-carbonization transformation: China, CN102757073B[P/OL]. 2014-06-18

    Google Scholar

    [25] XIE L, ZHANG T, LV G, et al. Direct calcification–carbonation method for processing of Bayer process red mud[J]. Russian Journal of Non-ferrous Metals, 2018, 59(2):142-147. doi: 10.3103/S1067821218020050

    CrossRef Google Scholar

    [26] LI R, ZHANG T, LIU Y, et al. Calcification-carbonation method for red mud processing[J]. Journal of Hazardous Materials, 2016, 316:94-101. doi: 10.1016/j.jhazmat.2016.04.072

    CrossRef Google Scholar

    [27] 鲁桂林, 迟松江, 毕诗文. 赤泥中氧化铝和氧化铁的浸出[J]. 材料与冶金学报, 2010(1):31-34+67. doi: 10.3969/j.issn.1671-6620.2010.01.008

    CrossRef Google Scholar

    LU G L, CHI S J, BI S W. Leaching of alumina and iron oxide from red mud[J]. Journal of Materials and Metallurgy, 2010(1):31-34+67. doi: 10.3969/j.issn.1671-6620.2010.01.008

    CrossRef Google Scholar

    [28] PASCALE V, D T R, CHRISTIAN A J, et al. Chemical and biological leaching of aluminum from red mud[J]. Environmental Science Technology, 1994, 28(1):26. doi: 10.1021/es00050a005

    CrossRef Google Scholar

    [29] 孙旺, 郑诗礼, 张亦飞, 等. NaOH亚熔盐法处理拜尔法赤泥的铝硅行为[J]. 过程工程学报, 2008, 8(6):1148-1152. doi: 10.3321/j.issn:1009-606X.2008.06.020

    CrossRef Google Scholar

    SUN W, ZHENG S L, ZHANG Y F, et al. Al-Si behavior of Bayer process red mud treated by NaOH sub-molten salt method[J]. The Chinese Journal of Process Engineering, 2008, 8(6):1148-1152. doi: 10.3321/j.issn:1009-606X.2008.06.020

    CrossRef Google Scholar

    [30] 常军, 邵延海, 李硕, 等. 赤泥中有价金属元素综合回收研究现状及进展[J]. 矿冶, 2017, 26(3):59-63. doi: 10.3969/j.issn.1005-7854.2017.03.013

    CrossRef Google Scholar

    CHANG J, SHAO Y H, LI S, et al. Research status and progress of comprehensive recovery of valuable metal elements in red mud[J]. Mining and Metallurgy, 2017, 26(3):59-63. doi: 10.3969/j.issn.1005-7854.2017.03.013

    CrossRef Google Scholar

    [31] 雷清源, 周康根, 何德文, 等. 赤泥中钪和钛的回收研究进展[J]. 矿产保护与利用, 2019(3):15-20.

    Google Scholar

    LEI Q Y, ZHOU K G, HE D W, et al. Research progress on the recovery of scandium and titanium in red mud[J]. Mineral Resources Conservation and Utilization, 2019(3):15-20.

    Google Scholar

    [32] PIGA L, POCHETTI F, STOPPA L. Recovering metals from red mud generated during alumina production[J]. Jom, 1993, 45(11):54-59. doi: 10.1007/BF03222490

    CrossRef Google Scholar

    [33] 朱晓波, 管学茂, 李望. 赤泥酸浸提钛实验研究[J]. 稀有金属与硬质合金, 2015, 43(2):11-13+49.

    Google Scholar

    ZHU X B, GUAN X M, LI W. Experimental study on the acid leaching of titanium from red mud[J]. Rare Metals and Cemented Carbides, 2015, 43(2):11-13+49.

    Google Scholar

    [34] 张江娟. 从赤泥中回收二氧化钛的初步研究[J]. 中国资源综合利用, 2003(1):28-30. doi: 10.3969/j.issn.1008-9500.2003.01.020

    CrossRef Google Scholar

    ZHANG J J. A preliminary study on the recovery of titanium dioxide from red mud[J]. China Resources Comprehensive Utilization, 2003(1):28-30. doi: 10.3969/j.issn.1008-9500.2003.01.020

    CrossRef Google Scholar

    [35] VIND J, MALFLIET A, BONOMI C, et al. Modes of occurrences of scandium in Greek bauxite and bauxite residue[J]. Minerals Engineering, 2018, 123:35-48. doi: 10.1016/j.mineng.2018.04.025

    CrossRef Google Scholar

    [36] 王爱平, 汪胜东, 靳冉公. 赤泥提钪技术研究进展[J]. 中国资源综合利用, 2014(9):40-42. doi: 10.3969/j.issn.1008-9500.2014.09.025

    CrossRef Google Scholar

    WANG A P, WANG S D, JIN R G. Research progress in technology of extracting scandium from red mud[J]. China Resources Comprehensive Utilization, 2014(9):40-42. doi: 10.3969/j.issn.1008-9500.2014.09.025

    CrossRef Google Scholar

    [37] ZHOU K, TENG C, ZHANG X, et al. Enhanced selective leaching of scandium from red mud[J]. Hydrometallurgy, 2018, 182:57-63. doi: 10.1016/j.hydromet.2018.10.011

    CrossRef Google Scholar

    [38] ZHU X, LI W, XING B, et al. Extraction of scandium from red mud by acid leaching with CaF2 and solvent extraction with P507[J]. Journal of Rare Earths, 2020, 38(9):1003-1008. doi: 10.1016/j.jre.2019.12.001

    CrossRef Google Scholar

    [39] BORRA C R, BLANPAIN B, PONTIKES Y, et al. Recovery of rare earths and major metals from bauxite residue (red mud) by alkali roasting, smelting, and leaching[J]. Journal of Sustainable Metallurgy, 2017, 3(2):393-404. doi: 10.1007/s40831-016-0103-3

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(2496) PDF downloads(178) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint