Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 3
Article Contents

A Danchun, Xiao Xueying, Wen Jing, Dong Jinmei, Zheng Weixin, Chang Chenggong. Study on the Technology of Preparing Active MgO and MOC from Magnesium Hydroxide[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 17-26, 57. doi: 10.3969/j.issn.1000-6532.2022.03.004
Citation: A Danchun, Xiao Xueying, Wen Jing, Dong Jinmei, Zheng Weixin, Chang Chenggong. Study on the Technology of Preparing Active MgO and MOC from Magnesium Hydroxide[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 17-26, 57. doi: 10.3969/j.issn.1000-6532.2022.03.004

Study on the Technology of Preparing Active MgO and MOC from Magnesium Hydroxide

More Information
  • The salt lakes in Qaidam area are rich in magnesium resources. Along with the development and utilization of lithium and potassium resources a large amount of magnesium-rich by-products will be produced as by-products. In order to improve the utilization rate of magnesium resources, this article uses Mg (OH)2 prepared from calcium carbide slag and MgCl2 as raw materials to study the effect of the calcination process on the particle size, specific surface area, reactive MgO content and setting time of the calcined product. MOC specimens were prepared from the calcined products. The effects of calcining temperature and raw material ratio on the MOC specimens were studied. The results of the study show that the specific surface area of the calcined product decreases gradually with the increase of the calcination temperature and the extension of the holding time, and the particle size tends to decrease first and then increase. With the increase of calcination temperature and the extension of holding time, the reactive MgO content in the calcined product and the setting time of the calcined product increases gradually. When the calcination temperature of the raw material is 600℃, the molar ratio of reactive MgO to MgCl2 is 6, and the Baume degree of the MgCl2 solution is 27, the compressive strength of the MOC specimen is high, and the compressive strength gradually increases with age.

  • 加载中
  • [1] Yunsong J. Study of the new type of light magnesium cement foamed material[J]. Mater Lett, 2001, 50(1):28-31. doi: 10.1016/S0167-577X(00)00407-9

    CrossRef Google Scholar

    [2] Misra A, Mathur R. Magnesium oxychloride cement concrete[J]. Bull Mater, 2007, 30(3):239-246. doi: 10.1007/s12034-007-0043-4

    CrossRef Google Scholar

    [3] Xu B W, Ma H Y, Hu C L, et al. Influence of cenospheres on properties of magnesium oxychloride cement-base composites[J]. Mater Struct, 2016, 49(4):1319-1326. doi: 10.1617/s11527-015-0578-6

    CrossRef Google Scholar

    [4] 张骋, 张展鹏, 张荣娟, 等. 高致密氧化镁陶瓷制备工艺优化[J]. 稀有金属材料与工程, 2011, 40(S1):227-230.

    Google Scholar

    ZHANG P, ZHANG Z P, ZHANG R J, et al. Preparation process optimization of high-density magnesia ceramics[J]. Rare Metal Materials and Engineering, 2011, 40(S1):227-230.

    Google Scholar

    [5] Qianqian Ye, Yufei Han, Shifeng Zhang, et al. Bioinspired and biomineralized magnesium oxychloride cement with enhanced compressive strength and water resistance[J]. Journal of Hazardous Materials. 2020.

    Google Scholar

    [6] 王兆敏. 中国菱镁矿现状与发展趋势[J]. 中国非金属矿工业导刊, 2006(5):6-8+23. doi: 10.3969/j.issn.1007-9386.2006.05.002

    CrossRef Google Scholar

    WANG Z M. Present situation and development trend of magnesite in China[J]. China Nonmetallic Mineral Industry Guide, 2006(5):6-8+23. doi: 10.3969/j.issn.1007-9386.2006.05.002

    CrossRef Google Scholar

    [7] 董金美, 余红发, 张立明. 水合法测定活性MgO含量的试验条件研究[J]. 盐湖研究, 2010, 18(1):38-41.

    Google Scholar

    DONG J M, YU H F, ZHANG L M. Study on the experimental conditions for the determination of active MgO content by water method[J]. Salt Lake Research, 2010, 18(1):38-41.

    Google Scholar

    [8] 张旭, 冯雅静, 王志, 等. 氢氧化钠制备氢氧化镁阻燃热解特性研究[J]. 消防科学与技术, 2018, 37(3):379-380+413. doi: 10.3969/j.issn.1009-0029.2018.03.029

    CrossRef Google Scholar

    ZHANG X, FENG Y J, WANG Z, et al. Study on flame retardant pyrolysis characteristics of magnesium hydroxide prepared from sodium hydroxide[J]. Fire Science and Technology, 2018, 37(3):379-380+413. doi: 10.3969/j.issn.1009-0029.2018.03.029

    CrossRef Google Scholar

    [9] 李维翰, 尚红霞, 李盛栋. 轻烧氧化镁粉活性的研究[J]. 武汉钢铁学院学报, 1992(1):30-37.

    Google Scholar

    LI W H, SHANG H X, LI S D. Study on activity of light-fired magnesium oxide powder[J]. Journal of Wuhan Iron and Steel Institute, 1992(1):30-37.

    Google Scholar

    [10] 刘涛, 马鹏程, 于景坤, 等. 氢氧化镁热分解法制备活性氧化镁(英文)[J]. 硅酸盐学报, 2010(7):193-196.

    Google Scholar

    LIU T, MA P C, YU J K, et al. Preparation of active magnesium oxide by thermal decomposition of magnesium hydroxide[J]. Journal of the Chinese Ceramic Society, 2010(7):193-196.

    Google Scholar

    [11] 崔鑫, 邓敏. 煅烧制度对MgO活性的影响[J]. 南京工业大学学报(自然科学版), 2008, 30(4):52-55.

    Google Scholar

    CUI X, DENG M. Effect of calcination system on MgO activity[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2008, 30(4):52-55.

    Google Scholar

    [12] Abdel-Gawwad HA, Khalil KA. Preparation and characterization of one-part magnesium oxychloride cement[J]. Construction and Building Materials, 2018, 189(20):745-750.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(5)

Article Metrics

Article views(1839) PDF downloads(599) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint