Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 3
Article Contents

Guo Jiaming, Liang Jinglong, Li Hui, Xu Zhengzhen. Research Progress on Preparation Technology of Titanium Aluminum Alloy and its Intermetallic Compounds[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 1-5. doi: 10.3969/j.issn.1000-6532.2022.03.001
Citation: Guo Jiaming, Liang Jinglong, Li Hui, Xu Zhengzhen. Research Progress on Preparation Technology of Titanium Aluminum Alloy and its Intermetallic Compounds[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 1-5. doi: 10.3969/j.issn.1000-6532.2022.03.001

Research Progress on Preparation Technology of Titanium Aluminum Alloy and its Intermetallic Compounds

More Information
  • With the rapid development and application of China's aerospace and civil machinery fields, the demand for the production and use of titanium-aluminum alloy products continues to increase, and the study of low-cost, high-performance titanium aluminum alloy preparation processes has been put on the agenda. The process, principle, advantages and disadvantages of powder metallurgy, thermite reduction, electrodeposition and molten salt electrolysis to prepare titanium aluminum alloy were summarized, and pointed out the future research direction.

  • 加载中
  • [1] 李军, 吴恩辉, 杨绍利, 等. 电铝热还原法制备的钛铝合金真空磁悬浮精炼研究[J]. 钢铁钒钛, 2019, 40(2):41-49. doi: 10.7513/j.issn.1004-7638.2019.02.007

    CrossRef Google Scholar

    LI J, WU E H, YANG S L, et al. Research on vacuum magnetic levitation refining of titanium-aluminum alloy prepared by electrothermal reduction method[J]. Iron and Steel Vanadium and Titanium, 2019, 40(2):41-49. doi: 10.7513/j.issn.1004-7638.2019.02.007

    CrossRef Google Scholar

    [2] 张哲, 张利国, 肖增华, 等. 钛/铝异种合金FSLW接头的成形与组织研究[J]. 热加工工艺, 2018, 47(17):190-192.

    Google Scholar

    ZHANG Z, ZHANG L G, XIAO Z H, et al. Research on the formation and structure of titanium/aluminum dissimilar alloy FSLW joints[J]. Hot Working Technology, 2018, 47(17):190-192.

    Google Scholar

    [3] 杨康, 孙红亮, 陈志元, 等. 镀镍碳纳米管/TiAl复合材料的制备与性能[J]. 金属热处理, 2019, 44(10):166-169.

    Google Scholar

    YANG K, SUN H L, CHEN Z Y, et al. Preparation and properties of nickel-plated carbon nanotubes/TiAl composites[J]. Heat Treatment of Metals, 2019, 44(10):166-169.

    Google Scholar

    [4] 周泉, 丁泽良, 王易, 等. Ti6Al4V钛合金表面Ta2O5/Ta2O5-Ti/Ti多涂层的制备与性能研究[J]. 包装学报, 2019, 11(6):23-30. doi: 10.3969/j.issn.1674-7100.2019.06.004

    CrossRef Google Scholar

    ZHOU Q, DING Z L, WANG Y, et al. Preparation and properties of Ta2O5/Ta2O5-Ti/Ti multi-coating on Ti6Al4V titanium alloy surface[J]. Packaging Journal, 2019, 11(6):23-30. doi: 10.3969/j.issn.1674-7100.2019.06.004

    CrossRef Google Scholar

    [5] 王月林, 黄烜昭, 李小强, 等. TA15钛合金深腔形零件超塑成形试验与仿真研究[J]. 锻压技术, 2015, 40(9):37-42.

    Google Scholar

    WANG Y L, HUANG X Z, LI X Q, et al. Superplastic forming experiment and simulation study of TA15 titanium alloy deep cavity parts[J]. Forging Technology, 2015, 40(9):37-42.

    Google Scholar

    [6] Handong Jiao, Weili Song, Haosen Chen, et al. Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis[J]. Journal of Cleaner Production, 2020:261.

    Google Scholar

    [7] 魏文庆, 曹光明, 刘炳强, 等. 粉末冶金Nb-35Ti-6Al-5Cr-8V合金组织演变及其力学行为[J]. 稀有金属材料与工程, 2019, 48(12):4106-4112.

    Google Scholar

    WEI W Q, CAO G M, LIU B Q, et al. Microstructure evolution and mechanical behavior of powder metallurgy Nb-35Ti-6Al-5Cr-8V alloy[J]. Rare Metal Materials and Engineering, 2019, 48(12):4106-4112.

    Google Scholar

    [8] Niu H Z, Zhang H R, Sun Q Q, et al. Breaking through the strength-ductility trade-off dilemma in powder metallurgy Ti-6Al-4V titanium alloy[J]. Materials Science and Engineering:A, 2019, 754:361-369. doi: 10.1016/j.msea.2019.03.089

    CrossRef Google Scholar

    [9] Nassar A E, Nassar E E. Properties of aluminum matrix nano composites prepared by powder metallurgy processing[J]. Journal of King Saud University-Engineering Sciences, 2017, 29(3):295-299. doi: 10.1016/j.jksues.2015.11.001

    CrossRef Google Scholar

    [10] Bolzoni L. Low-cost Fe-bearing powder metallurgy Ti alloys[J]. Metal Powder Report, 2019, 74(6):308-313. doi: 10.1016/j.mprp.2019.01.007

    CrossRef Google Scholar

    [11] A Rezaei, HRM Hosseini. Investigating the effect of heat treatment on the fracture toughness of a hot extruded Al-Ti composite produced by powder metallurgy route[J]. Materials Science and Engineering:A, 2020, 771:138573. doi: 10.1016/j.msea.2019.138573

    CrossRef Google Scholar

    [12] 罗铜, 许磊, 刘建华, 等. 微波烧结制备钛铝合金研究[J]. 稀有金属, 2019:1-8.

    Google Scholar

    LUO T, XU L, LIU J H, et al. Research on microwave sintering of titanium and aluminum Alloys[J]. Rare Metals, 2019:1-8.

    Google Scholar

    [13] 程楚, 豆志河, 张廷安, 等. 铝热还原制备Ti-6Al-4V合金的热力学和动力学[J]. 东北大学学报(自然科学版), 2018, 39(5):638-642. doi: 10.12068/j.issn.1005-3026.2018.05.007

    CrossRef Google Scholar

    CHENG C, DOU Z H, ZHANG T A, et al. Thermodynamics and kinetics of Ti-6Al-4V alloy prepared by aluminothermic reduction[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39(5):638-642. doi: 10.12068/j.issn.1005-3026.2018.05.007

    CrossRef Google Scholar

    [14] Knaislova A, Novak P, Cabibbo M, et al. Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys[J]. Journal of Alloys and Compounds, 2018:317-326.

    Google Scholar

    [15] Lan M, Rongxun P, Shaoli Y, et al. Preparation of multi-components TiAl based alloy by aluminothermic reduction of acid soluble titanium bearing slag[J]. Rare Metal Materials and Engineering, 2018, 47(5):1411-1421. doi: 10.1016/S1875-5372(18)30143-7

    CrossRef Google Scholar

    [16] Kun Zhao, Naixiang Feng, Yaowu Wang. Fabrication of Ti-Al intermetallics by a two-stage aluminothermic reduction process using Na2TiF6[J]. Intermetallics, 2017:85.

    Google Scholar

    [17] 路云舒. 氯铝酸离子液体电沉积铝钛合金行为研究[D]. 沈阳: 沈阳师范大学, 2016.

    Google Scholar

    LU Y S. Study on the behavior of electrodeposition of aluminum-titanium alloy with chloroaluminate ionic liquid[D]. Shenyang: Shenyang Normal University, 2016.

    Google Scholar

    [18] Yang S, Yang F, Liao C, et al. Electrodeposition of magnesium-yttrium alloys by molten salt electrolysis[J]. Journal of Rare Earths, 2010, 28(S1):385-388.

    Google Scholar

    [19] Saji V S. Electrodeposition in bulk metallic glasses[J]. Materialia, 2018:1-11.

    Google Scholar

    [20] Lahiri A, Das R. Spectroscopic studies of the ionic liquid during the electrodeposition of Al-Ti alloy in 1-ethyl-3-methylimidazolium chloride melt[J]. Materials Chemistry and Physics, 2012, 132(1):34-38. doi: 10.1016/j.matchemphys.2011.10.048

    CrossRef Google Scholar

    [21] Pradhan D, Reddy R G. Electrochemical production of Ti–Al alloys using TiCl4–AlCl3–1-butyl-3-methyl imidazolium chloride (BmimCl) electrolytes[J]. Electrochimica Acta, 2009, 54(6):1874-1880. doi: 10.1016/j.electacta.2008.10.022

    CrossRef Google Scholar

    [22] 崔鹏, 戴玮, 颜恒维, 等. LiCl-KCl熔盐中电解还原钛铁矿的研究[J]. 有色金属(冶炼部分), 2018(11):16-18+27.

    Google Scholar

    CUI P, DAI W, YAN H W, et al. Research on electrolytic reduction of ilmenite in LiCl-KCl molten salt[J]. Nonferrous Metals (Extractive Metallurgy), 2018(11):16-18+27.

    Google Scholar

    [23] 郑天新, 梁精龙, 李慧, 等. TiO2在NaCl-KCl-NaF熔盐体系中的初晶温度及溶解机理研究[J]. 矿产综合利用, 2019(3):141-145. doi: 10.3969/j.issn.1000-6532.2019.03.031

    CrossRef Google Scholar

    ZHENG T X, LIANG J L, LI H et al. Study on the initial crystallization temperature and dissolution mechanism of TiO2 in NaCl-KCl-NaF molten salt system[J]. Multipurpose Utilization of Mineral Resources, 2019(3):141-145. doi: 10.3969/j.issn.1000-6532.2019.03.031

    CrossRef Google Scholar

    [24] AM. Abdelkader, Fray D J. Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification[J]. Journal of The European Ceramic Society, 2012, 32(16):4481-4487. doi: 10.1016/j.jeurceramsoc.2012.07.010

    CrossRef Google Scholar

    [25] 闫蓓蕾. Ti2O3与AlCl3共沉积方法熔盐电解制备Ti-Al合金[J]. 钢铁钒钛, 2017, 38(4):34-39. doi: 10.7513/j.issn.1004-7638.2017.04.007

    CrossRef Google Scholar

    YAN B L. Ti-Al alloy prepared by molten salt electrolysis by Ti2O3 and AlCl3 co-deposition method[J]. Iron and Steel Vanadium and Titanium, 2017, 38(4):34-39. doi: 10.7513/j.issn.1004-7638.2017.04.007

    CrossRef Google Scholar

    [26] 王汝佳. 熔盐电脱氧法制备钛铝合金的研究[D]. 沈阳: 东北大学, 2015.

    Google Scholar

    WANG R J. Study on the preparation of titanium-aluminum alloy by molten salt electro-deoxidation method[D]. Shenyang: Northeastern University, 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2620) PDF downloads(1007) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint